Climate Dynamics

, Volume 47, Issue 3–4, pp 1073–1090

Multi-model ensemble analysis of Pacific and Atlantic SST variability in unperturbed climate simulations

  • D. Zanchettin
  • O. Bothe
  • A. Rubino
  • J. H. Jungclaus


We assess internally-generated climate variability expressed by a multi-model ensemble of unperturbed climate simulations. We focus on basin-scale annual-average sea surface temperatures (SSTs) from twenty multicentennial pre-industrial control simulations contributing to the fifth phase of the Coupled Model Intercomparison Project. Ensemble spatial patterns of regional modes of variability and ensemble (cross-)wavelet-based phase-frequency diagrams of corresponding paired indices summarize the ensemble characteristics of inter-basin and regional-to-global SST interactions on a broad range of timescales. Results reveal that tropical and North Pacific SSTs are a source of simulated interannual global SST variability. The North Atlantic-average SST fluctuates in rough co-phase with the global-average SST on multidecadal timescales, which makes it difficult to discern the Atlantic Multidecadal Variability (AMV) signal from the global signal. The two leading modes of tropical and North Pacific SST variability converge towards co-phase in the multi-model ensemble, indicating that the Pacific Decadal Oscillation (PDO) results from a combination of tropical and extra-tropical processes. No robust inter- or multi-decadal inter-basin SST interaction arises from our ensemble analysis between the Pacific and Atlantic oceans, though specific phase-locked fluctuations occur between Pacific and Atlantic modes of SST variability in individual simulations and/or periods within individual simulations. The multidecadal modulation of PDO by the AMV identified in observations appears to be a recurrent but not typical feature of ensemble-simulated internal variability. Understanding the mechanism(s) and circumstances favoring such inter-basin SST phasing and related uncertainties in their simulated representation could help constraining uncertainty in decadal climate predictions.

Supplementary material

382_2015_2889_MOESM1_ESM.pdf (1.5 mb)
Supplementary material 1 (PDF 1565 kb)


  1. Andrews T, Gregory JM, Webb MJ, Taylor KE (2012) Forcing, feedbacks and climate sensitivity in CMIP5 coupled atmosphere–ocean climate models. Geophys Res Lett 39:L09712. doi:10.1029/2012GL051607 Google Scholar
  2. Ault TR, Cole JE, St. George S (2012) The amplitude of decadal to multidecadal variability in precipitation simulated by state-of-the-art climate models. Geophys Res Lett 39:L21705. doi:10.1029/2012GL05342 CrossRefGoogle Scholar
  3. Bentsen M, Bethke I, Debernard JB, Iversen T, Kirkevag A, Seland Ø, Drange H, Roelandt C, Seierstad IA, Hoose C, Kristjansson JE (2013) The Norwegian earth system model, NorESM1-M—Part 1: description and basic evaluation of the physical climate. Geosci Model Dev 6:687–720. doi:10.5194/gmd-6-687-2013 CrossRefGoogle Scholar
  4. Bhend J, Whetton P (2013) Consistency of simulated and observed regional changes in temperature, sea level pressure and precipitation. Clim Change. doi:10.1007/s10584-012-0691-2 Google Scholar
  5. Bi D et al (2013) The ACCESS coupled model: description, control climate and evaluation. Aust Meteorol Oceanogr J 63:41–64Google Scholar
  6. Booth BBB, Dunstone NJ, Halloran PR, Andrews T, Bellouin N (2012) Aerosols implicated as a prime driver of twentieth-century North Atlantic climate variability. Nature. doi:10.1038/nature10946 Google Scholar
  7. Bothe O, Jungclaus JH, Zanchettin D (2013) Consistency of the multi-model CMIP5/PMIP3-past1000 Ensemble. Clim Past 9(6):2471–2487. doi:10.5194/cp-9-2471-2013 CrossRefGoogle Scholar
  8. Braconnot P et al (2012) Evaluation of climate models using palaeoclimatic data. Nat Clim Change 2:417–424. doi:10.1038/nclimate1456 CrossRefGoogle Scholar
  9. Choi J, An S-I, Kug J-S, Yeh S-W (2011) The role of mean state on changes in El Niño’s flavours. Clim Dyn 37:1205–1215CrossRefGoogle Scholar
  10. Chylek P, Li J, Dubey MK, Wang M, Lesins G (2011) Observed and model simulated 20th century Arctic temperature variability: Canadian Earth System Model CanESM2. Atmo Chem Phys Discuss 11:22893–22907. doi:10.5194/acpd-11-22893-2011 CrossRefGoogle Scholar
  11. Collins WJ et al (2011) Development and evaluation of an Earth-System model—HadGEM2. Geosci Model Dev 4:1051–1075. doi:10.5194/gmd-4-1051-2011 CrossRefGoogle Scholar
  12. D’Orgeville M, Peltier WR (2007) On the Pacific decadal oscillation and the Atlantic multidecadal oscillation: might they be related? Geophys Res Lett 34:L23705. doi:10.1029/2007GL031584 Google Scholar
  13. Deser C, Knutti R, Solomon S, Phillips AS (2012) Communication of the role of natural variability in future North American climate. Nat Clim Change 2:775–779. doi:10.1038/nclimate1562 CrossRefGoogle Scholar
  14. Di Lorenzo E, Cobb KM, Furtado J, Schneider N, Anderson B, Bracco A, Alexander MA, Vimont D (2010) Central Pacific El Niño and decadal climate change in the North Pacific. Nat Geosci 3(11):762–765. doi:10.1038/NGEO984 CrossRefGoogle Scholar
  15. Donner LJ et al (2011) The dynamical core, physical parameterizations, and basic simulation characteristics of the atmospheric component AM3 of the GFDL Global Coupled Model CM3. J Clim. doi:10.1175/2011JCLI3955.1 Google Scholar
  16. Enfield DB, Mestas-Nuñez AM (2000) Global modes of ENSO and Non-ENSO sea surface temperature variability and their associations with climate. In: Henry F. Diaz, Vera Markgraf (eds) Multiscale variability and global and regional impacts, Cambridge University Press, pp 89–112. doi:
  17. Enfield DB, Mestas-Nunez AM, Trimble PJ (2001) The Atlantic multidecadal oscillation and its relationship to rainfall and river flows in the continental U.S. Geophys Res Lett 28:2077–2080CrossRefGoogle Scholar
  18. Frankignoul C, Sennéchael N, Kwon Y-O, Alexander MA (2011) Influence of the meridional Shifts of the Kuroshio and the Oyashio extensions on the atmospheric circulation. J Clim 24:762–777CrossRefGoogle Scholar
  19. Fritsch JM, Hilliker J, Ross J, Vislocky RL (2000) Model consensus. Weather Forecast 15:571–582CrossRefGoogle Scholar
  20. Ge Z (2008) Significance tests for the wavelet cross spectrum and wavelet linear coherence. Ann Geophys 26:3819–3829CrossRefGoogle Scholar
  21. Gent PR et al (2011) The community climate system model version 4. J Clim 24:4973–4991. doi:10.1175/2011JCLI4083.1 CrossRefGoogle Scholar
  22. Giorgetta MA et al (2013) Climate change from 1850 to 2100 in MPI-ESM simulations for the Coupled Model Intercomparison Project 5. J Adv Model Earth Syst 5:572–597. doi:10.1002/jame.20038 CrossRefGoogle Scholar
  23. Graf HF, Zanchettin D (2012) Central Pacific El Niño, the “subtropical bridge” and Eurasian Climate. J Geophys Res 117:D01102. doi:10.1029/2011JD016493 CrossRefGoogle Scholar
  24. Griffies SM, Bryan K (1997) A predictability study of simulated North Atlantic multidecadal variability. Clim Dyn 13:459–487CrossRefGoogle Scholar
  25. Griffies SM et al (2011) The GFDL CM3 coupled climate model: characteristics of the ocean and sea ice simulations. J Clim. doi:10.1175/2011JCLI3964.1 Google Scholar
  26. Grinsted A, Moore JC, Jevrejeva S (2004) Application of the cross wavelet transform and wavelet coherence to geophysical time series. Nonlinear Process Geophys 11:561–566CrossRefGoogle Scholar
  27. Grodsky SA, Carton JA, Nigam S, Okumura YM (2012) Tropical Atlantic biases in CCSM4. J Clim 25:3684–3701. doi:10.1175/JCLI-D-11-00315.1 CrossRefGoogle Scholar
  28. Grossmann I, Klotzbach PJ (2009) A review of North Atlantic modes of natural variability and their driving mechanisms. J Geophys Res 114:D24107. doi:10.1029/2009JD012728 CrossRefGoogle Scholar
  29. Guilyardi E, Bellenger H, Collins M, Ferrett S, Cai W, Wittenberg A (2012) A first look at ENSO in CMIP5. CLIVAR Exchanges No. 58. 17(1):29–32Google Scholar
  30. Hand R, Keenlyside N, Omrani N-E, Latif M (2014) Simulated response to inter-annual SST variations in the Gulf Stream region. Clim Dyn 42:715–731. doi:10.1007/s00382-013-1715-y CrossRefGoogle Scholar
  31. Joetzjer E, Douville H, Delire C, Ciais P (2013) Present-day and future Amazonian precipitation in global climate models CMIP5 versus CMIP3. Clim Dyn. doi:10.1007/s00382-012-1644-1 Google Scholar
  32. Jones CD et al (2011) The HadGEM2-ES implementation of CMIP5 centennial simulations. Geosci Model Dev 4:543–570. doi:10.5194/gmd-4-543-2011 CrossRefGoogle Scholar
  33. Jungclaus JH et al (2010) Climate and carbon-cycle variability over the last millennium. Clim Past 6:723–737. doi:10.5194/cp-6-723-2010 CrossRefGoogle Scholar
  34. Jungclaus JH et al (2013) Characteristics of the ocean simulations in MPIOM, the ocean component of the Max Planck Institute Earth System Model. J Adv Model Earth Syst 5:422–446. doi:10.1002/jame.20023 CrossRefGoogle Scholar
  35. Kavvada A, Ruiz-Barradas A, Nigam S (2013) AMO’s structure and climate footprint in observations and IPCC AR5 climate simulations. Clim Dyn. doi:10.1007/s00382-013-1712-1 Google Scholar
  36. Knight JR (2009) The Atlantic multidecadal oscillation inferred from the forced climate response in coupled general circulation models. J Clim 22:1610–1625CrossRefGoogle Scholar
  37. Knutti R, Abramowitz G, Collins M, Eyring V, Gleckler PJ, Hewitson B, Mearns L (2010) Good practice guidance paper on assessing and combining multi model climate projections. In: Stocker TF, Qin D, Plattner G-K, Tignor M, Midgley PM (eds) Meeting report of the intergovernmental panel on climate change expert meeting on assessing and combining multi model climate projections. IPCC working group I technical support unit, University of Bern, Bern, SwitzerlandGoogle Scholar
  38. Li C, Wu L, Wang Q, Qu L, Zhang L (2009) An intimate coupling of ocean–atmospheric interaction over the extratropical North Atlantic and Pacific. Clim Dyn 32:753–765. doi:10.1007/s00382-009-0529-4 CrossRefGoogle Scholar
  39. Li J et al (2013) El Niño modulations over the past seven centuries. Nat Clim Change 3:822–826. doi:10.1038/nclimate1936 CrossRefGoogle Scholar
  40. Liu Z (2012) Dynamics of interdecadal climate variability: a historical perspective. J Clim 25:1963–1995. doi:10.1175/2011JCLI3980.1 CrossRefGoogle Scholar
  41. Lohmann K, Jungclaus JH, Matei D, Mignot J, Menary M, Langehaug HR, Ba J, Gao Y, Otterå OH, Park W, Lorenz S (2014) The role of subpolar deep water formation and Nordic Seas overflows in simulated multidecadal variability of the Atlantic meridional overturning circulation. Ocean Sci 10:227–241. doi:10.5194/os-10-227-2014 CrossRefGoogle Scholar
  42. Long MC, Lindsay K, Peacock S, Moore JK, Doney SC (2013) Twentieth-century oceanic carbon uptake and storage in CESM1(BGC). J Clim 26:6775–6800. doi:10.1175/JCLI-D-12-00184.1 CrossRefGoogle Scholar
  43. Mantua NJ, Hare SR, Zhang Y, Wallace JM, Francis RC (1997) A Pacific interdecadal climate oscillation with impacts on salmon production. Bull Am Meteorol Soc 78:1069–1079CrossRefGoogle Scholar
  44. Maraun D, Kurths J (2004) Cross wavelet analysis: significance testing and pitfalls. Nonlinear Process Geophys 11(4):505–514 SRef-ID: 1607-7946/npg/2004-11-505 CrossRefGoogle Scholar
  45. Medhaug I, Furevik T (2011) North Atlantic 20th century multidecadal variability in coupled climate models: sea surface temperature and ocean overturning circulation. Ocean Sci 7:389–404. doi:10.5194/os-7-389-2011 CrossRefGoogle Scholar
  46. Müller WA, Roeckner E (2008) ENSO teleconnections in projections of future climate in ECHAM5/MPI-OM. Clim Dyn 31:533–549. doi:10.1007/s00382-007-0357-3 CrossRefGoogle Scholar
  47. Newman M, Compo G, Alexander M (2003) ENSO-forced variability of the Pacific decadal oscillation. J Clim 16:3853–3857CrossRefGoogle Scholar
  48. Otterå OH, Bentsen M, Drange H, Suo L (2010) External forcing as a metronome for Atlantic multidecadal variability. Nat Geosci. doi:10.1038/NGEO995 Google Scholar
  49. Park W, Latif M (2010) Pacific and Atlantic multidecadal variability in the Kiel climate model. Geophys Res Lett 37:L24702. doi:10.1029/2010GL045560 Google Scholar
  50. Phipps SJ, Rotstayn LD, Gordon HB, Roberts JL, Hirst AC, Budd WF (2011) The CSIRO Mk3L climate system model version 1.0—Part 1: description and evaluation. Geosci Model Dev 4:483–509. doi:10.5194/gmd-4-483-2011 CrossRefGoogle Scholar
  51. Phipps SJ, Rotstayn LD, Gordon HB, Roberts JL, Hirst AC, Budd WF (2012) The CSIRO Mk3L climate system model version 1.0—Part 2: response to external forcings. Geosci Model Dev 5:649–682. doi:10.5194/gmd-5-649-2012 CrossRefGoogle Scholar
  52. Pierce DW, Barnett TP, Schneider N, Saravanan R, Dommenget D, Latif M (2001) The role of ocean dynamics in producing decadal climate variability in the North Pacific. Clim Dyn 18:51–70CrossRefGoogle Scholar
  53. Rayner NA et al (2003) Global analyses of sea surface temperature, sea ice, and night marine air temperature since the late nineteenth century. J Geophys Res 108:D144407. doi:10.1029/2002JD002670 CrossRefGoogle Scholar
  54. Rotstayn LD, Jeffrey SJ, Collier MA, Dravitzki SM, Hirst AC, Syktus JI, Wong KK (2012) Aerosol- and greenhouse gas-induced changes in summer rainfall and circulation in the Australasian region: a study using single-forcing climate simulations. Atmos Chem Phys 12:6377–6404. doi:10.5194/acp-12-6377-2012 CrossRefGoogle Scholar
  55. Ruiz-Barradas A, Nigam S, Kavvada A (2013) The Atlantic multidecadal oscillation in twentieth century climate simulations: uneven progress from CMIP3 to CMIP5. Clim Dyn. doi:10.1007/s00382-013-1810-0 Google Scholar
  56. Russell AM, Gnanadesikan A (2014) Understanding multidecadal variability in ENSO amplitude. J Clim 27:4037–4051. doi:10.1175/JCLI-D-13-00147.1 CrossRefGoogle Scholar
  57. Sheffield J et al (2013) North American climate in CMIP5 experiments. Part II: evaluation of historical simulations of intraseasonal to decadal variability. J Clim 26:9247–9290. doi:10.1175/JCLI-D-12-00593.1 CrossRefGoogle Scholar
  58. Taguchi B, Xie S-P, Schneider N, Nonaka M, Sasaki H, Sasai Y (2007) Decadal variability of the Kuroshio extension: observations and an eddy-resolving model hindcast. J Clim 20:2357–2377CrossRefGoogle Scholar
  59. Tantet A, Dijkstra HA (2014) An interaction network perspective on the relation between patterns of sea surface temperature variability and global mean surface temperature. Earth Syst Dyn 5:1–14. doi:10.5194/esd-5-1-2014 CrossRefGoogle Scholar
  60. Taylor KE, Stouffer RJ, Meehl GA (2012) An overview of CMIP5 and the experiment design. Bull Am Meteorol Soc 93:485–498. doi:10.1175/BAMS-D-11-00094.1 CrossRefGoogle Scholar
  61. van Oldenborgh GJ, Doblas Reyes FJ, Drijfhout SS, Hawkins E (2013) Reliability of regional climate model trends. Environ Res Lett 8:014055. doi:10.1088/1748-9326/8/1/014055 CrossRefGoogle Scholar
  62. Vimont D (2005) The contribution of the interannual ENSO cycle to the spatial pattern of decadal ENSO-like variability. J Clim 18:2080–2092CrossRefGoogle Scholar
  63. Voldoire A et al (2012) The CNRM-CM5.1 global climate model: description and basic evaluation. Clim Dyn. doi:10.1007/s00382-011-1259-y Google Scholar
  64. Wang C (2005) ENSO, Atlantic climate variability, and the Walker and Hadley circulations. In: Diaz HF, Bradley RS (eds) The Hadley circulation: present, past and future. Kluwer Academic Publishers, Dordrecht, pp 173–202Google Scholar
  65. Wang C, Zhang L, Lee S-K, Wu L, Mechoso CR (2014) A global perspective on CMIP5 climate model biases. Nat Clim Change 4:201–205. doi:10.1038/nclimate2118 CrossRefGoogle Scholar
  66. Watanabe M et al (2010) Improved climate simulation by MIROC5: mean states, variability, and climate sensitivity. J Clim 23:6312–6335. doi:10.1175/2010JCLI3679 CrossRefGoogle Scholar
  67. Wu S, Liu Z, Zhang R, Delworth TL (2011) On the observed relationship between the Pacific decadal oscillation and the Atlantic multi-decadal oscillation. J Oceanogr 67:27–35. doi:10.1007/s10872-011-0003-x CrossRefGoogle Scholar
  68. Yoshimori M, Raible CC, Stocker TF, Renold M (2010) Simulated decadal oscillations of the Atlantic meridional overturning circulation in a cold climate state. Clim Dyn 34:101–121. doi:10.1007/s00382-009-0540-9 CrossRefGoogle Scholar
  69. Zanchettin D, Rubino A, Traverso P, Tomasino M (2008) Impact of variations in solar activity on hydrological decadal patterns in northern Italy. J Geophys Res 113:D12102. doi:10.1029/2007JD009157 CrossRefGoogle Scholar
  70. Zanchettin D, Rubino A, Jungclaus JH (2010) Intermittent multidecadal-to-centennial fluctuations dominate global temperature evolution over the last millennium. Geophys Res Lett 37:L14702. doi:10.1029/2010GL043717 CrossRefGoogle Scholar
  71. Zanchettin D, Bothe O, Graf HF, Lorenz SJ, Luterbacher J, Timmreck C, Jungclaus JH (2013a) Background conditions influence the decadal climate response to strong volcanic eruptions. J Geophys Res Atmos 118(10):4090–4106. doi:10.1002/jgrd.50229 CrossRefGoogle Scholar
  72. Zanchettin D, Rubino A, Matei D, Bothe O, Jungclaus JH (2013b) Multidecadal-to-centennial SST variability in the MPI-ESM simulation ensemble for the last millennium. Clim Dyn 40(5):1301–1318. doi:10.1007/s00382-012-1361-9 CrossRefGoogle Scholar
  73. Zanchettin D, Bothe O, Müller W, Bader J, Jungclaus JH (2014) Different flavors of the Atlantic multidecadal variability. Clim Dyn 42(1–2):381–399. doi:10.1007/s00382-013-1669-0 CrossRefGoogle Scholar
  74. Zhang R, Delworth TL (2007) Impact of the Atlantic multidecadal oscillation on North Pacific climate variability. Geophys Res Lett 34:L23708. doi:10.1029/2007GL031601 Google Scholar
  75. Zhang R et al (2013) Have aerosols caused the observed Atlantic multidecadal variability? J Atmos Sci 70:1135–1144. doi:10.1175/JAS-D-12-0331.1 CrossRefGoogle Scholar
  76. Zou Y, Yu J-Y, Lee T, Lu M-M, Kim ST (2014) CMIP5 model simulations of the impacts of the two types of El Niño on the U.S. winter temperature. J Geophys Res Atmos 119(6):3076–3092. doi:10.1002/2013JD021064 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • D. Zanchettin
    • 1
    • 2
  • O. Bothe
    • 3
  • A. Rubino
    • 2
  • J. H. Jungclaus
    • 1
  1. 1.Max Planck Institute for MeteorologyHamburgGermany
  2. 2.Department of Environmental Sciences, Informatics and StatisticsCa’Foscari University of VeniceMestreItaly
  3. 3.Leibniz-Institut für Atmosphärenphysik e.V. an der Universität RostockKühlungsbornGermany

Personalised recommendations