Climate Dynamics

, Volume 47, Issue 3–4, pp 951–965 | Cite as

Spatial stabilization and intensification of moistening and drying rate patterns under future climate change

  • Yann Chavaillaz
  • Sylvie Joussaume
  • Sandrine Bony
  • Pascale Braconnot
Original Article

Abstract

Precipitation projections are usually presented as the change in precipitation between a fixed current baseline and a particular time in the future. However, upcoming generations will be affected in a way probably more related to the moving trend in precipitation patterns, i.e. to the rate and the persistence of regional precipitation changes from one generation to the next, than to changes relative to a fixed current baseline. In this perspective, we propose an alternative characterization of the future precipitation changes predicted by general circulation models, focusing on the precipitation difference between two subsequent 20-year periods. We show that in a business-as-usual emission pathway, the moistening and drying rates increase by 30–40 %, both over land and ocean. As we move further over the twenty-first century, more regions exhibit a significant rate of precipitation change, while the patterns become geographically stationary and the trends persistent. The stabilization of the geographical rate patterns that occurs despite the acceleration of global warming can be physically explained: it results from the increasing contribution of thermodynamic processes compared to dynamic processes in the control of precipitation change. We show that such an evolution is already noticeable over the last decades, and that it could be reversed if strong mitigation policies were quickly implemented. The combination of intensification and increasing persistence of precipitation rate patterns may affect the way human societies and natural ecosystems adapt to climate change, especially in the Mediterranean basin, in Central America, in South Asia and in the Arctic.

Keywords

Climate change CMIP5 simulations Persistent rate patterns Rate of precipitation change Spatial stabilization 

References

  1. Allan RP (2012) Regime dependent changes in global precipitation. Clim Dyn 39(3–4):827–840. doi:10.1007/s00382-011-1134-x CrossRefGoogle Scholar
  2. Allan RP, Liu M, Cand Z, Lavers DA, Koukouvagias E, Bodas-Salcedo A (2014) Physically consistent responses of the global atmospheric hydrological cycle in models and observations. Surv Geophys 35(3):533–552. doi:10.1007/s10712-012-9213-z CrossRefGoogle Scholar
  3. Becker A, Finger P, Meyer-Christoffer A, Rudolf B, Schamm K, Schneider U, Ziese M (2013) A description of the global land-surface precipitation data products of the global precipitation climatology centre with sample applications including centennial (trend) analysis from 1901 to present. Earth Syst Sci Data 5(1):71–99. doi:10.5194/essd-5-71-2013 CrossRefGoogle Scholar
  4. Boberg F, Berg P, Thejll P, Gutowski WJ, Christensen JH (2009) Improved confidence in climate change projections of precipitation evaluated using daily statistics from the PRUDENCE ensemble. Clim Dyn 32(7–8):1097–1106. doi:10.1007/s00382-008-0446-y CrossRefGoogle Scholar
  5. Boberg F, Berg P, Thejll P, Gutowski WJ, Christensen JH (2010) Improved confidence in climate change projections of precipitation further evaluated using daily statistics from ENSEMBLES models. Clim Dyn 35(7–8):1509–1520. doi:10.1007/s00382-009-0683-8 CrossRefGoogle Scholar
  6. Bony S, Dufresne JL, Le Treut H, Morcrette JJ, Senior C (2004) On dynamic and thermodynamic components of cloud changes. Clim Dyn 22(2–3):71–86. doi:10.1007/s00382-003-0369-6 CrossRefGoogle Scholar
  7. Bony S, Bellon G, Klocke D, Sherwood S, Fermepin S, Denvil S (2013) Robust direct effect of carbon dioxide on tropical circulation and regional precipitation. Nat Geosci 6(6):447–451. doi:10.1038/ngeo1799 CrossRefGoogle Scholar
  8. Byrne MP, O’Gorman PA (2015) The response of precipitation minus evapotranspiration to climate warming: why the “wet-get-wetter, dry-get-drier” scaling does not hold over land. J Clim 28(20):8078–8092. doi:10.1175/JCLI-D-15-0369.1 CrossRefGoogle Scholar
  9. Cao L, Bala G, Caldeira K (2012) Climate response to changes in atmospheric carbon dioxide and solar irradiance on the time scale of days to weeks. Environ Res Lett 7(034):015. doi:10.1088/1748-9326/7/3/034015 Google Scholar
  10. Chadwick R, Boutle I, Martin G (2013) Spatial patterns of precipitation change in CMIP5: why the rich do not get richer in the tropics. J Clim 26(11):3803–3822. doi:10.1175/JCLI-D-12-00543.1 CrossRefGoogle Scholar
  11. Chapin FS et al (2000) Consequences of changing biodiversity. Nature 405(6783):234–242. doi:10.1038/35012241 CrossRefGoogle Scholar
  12. Chavaillaz Y, Joussaume S, Dehecq A, Braconnot P, Vautard R (submitted) Investigating the pace of temperature change and its implications over the twenty-first century. Clim ChangeGoogle Scholar
  13. Chou C, Chiang JCH, Lan CW, Chung CH, Liao YC, Lee CJ (2013) Increase in the range between wet and dry season precipitation. Nat Geosci 6(4):263–267. doi:10.1038/ngeo1744 CrossRefGoogle Scholar
  14. Collins M et al (2013) Long-term climate change: projections, commitments and irreversibility. In: Climate Change 2013: the physical science basis. Contribution of working group I to the fifth assessment report of the intergovernmental panel on climate change, Cambridge University PressGoogle Scholar
  15. Dai A (2006) Precipitation characteristics in eighteen coupled climate models. J Clim 19(18):4605–4630. doi:10.1175/JCLI3884.1 CrossRefGoogle Scholar
  16. Dai A, Trenberth KE (2004) The diurnal cycle and its depiction in the community climate system model. J Clim 17(5):930–951. doi:10.1175/1520-0442 CrossRefGoogle Scholar
  17. Dawson TP, Jackson ST, House JI, Prentice IC, Mace GM (2011) Beyond predictions: biodiversity conservation in a changing climate. Science 332(6025):53–58. doi:10.1126/science.1200303 CrossRefGoogle Scholar
  18. Deser C, Phillips A, Bourdette V, Teng H (2010) Uncertainty in climate change projections: the role of internal variability. Clim Dyn 38:527–546. doi:10.1007/s00382-010-0977-x CrossRefGoogle Scholar
  19. de Elía R, Biner S, Frigon A, Côté H (2014) Timescales associated with climate change and their relevance in adaptation strategies. Clim Change 126(1–2):93–106. doi:10.1007/s10584-014-1209-x CrossRefGoogle Scholar
  20. Flato G, et al (2013) Evaluation of climate models. In: Climate Change 2013: the physical science basis. Contribution of working group I to the fifth assessment report of the intergovernmental panel on climate change, Cambridge University PressGoogle Scholar
  21. Garnier E (2010) Les dérangements du temps, 500 ans de chaud et froids en Europe. PlonGoogle Scholar
  22. Giorgi F, Bi X (2009) Time of emergence (ToE) of GHG-forced precipitation change hot-spots. Geophys Res Lett 36(6):L06,709. doi:10.1029/2009GL037593 CrossRefGoogle Scholar
  23. Greve P, Orlowsky B, Mueller B, Sheffield J, Reichstein M, Seneviratne SI (2014) Global assessment of trends in wetting and drying over land. Nat Geosci 7(10):716–721. doi:10.1038/ngeo2247 CrossRefGoogle Scholar
  24. Haerter JO, Berg P, Hagemann S (2010) Heavy rain intensity distributions on varying time scales and at different temperatures. J Geophys Res Atmos 115(D17). doi:10.1029/2009JD013384
  25. Harris I, Jones P, Osborn T, Lister D (2014) Updated high-resolution grids of monthly climatic observations—the CRU TS3.10 dataset. Int J Climatol 34(3):623–642. doi:10.1002/joc.3711 CrossRefGoogle Scholar
  26. Hartmann DL et al (2013) Observations: atmosphere and surface. In: Climate Change 2013: the physical science basis. Contribution of working group I to the fifth assessment report of the intergovernmental panel on climate change, Cambridge University PressGoogle Scholar
  27. Hawkins E, Sutton R (2009) The potential to narrow uncertainty in regional climate predictions. Bull Am Meteorol Soc 90:1095–1107. doi:10.1175/2009BAMS2607.1 CrossRefGoogle Scholar
  28. Hawkins E, Sutton R (2011) The potential to narrow uncertainty in projections of regional precipitation change. Clim Dyn 37(1–2):407–418. doi:10.1007/s00382-010-0810-6 CrossRefGoogle Scholar
  29. Held IM, Soden BJ (2006) Robust responses of the hydrological cycle to global warming. J Clim 19(21):5686–5699. doi:10.1175/JCLI3990.1 CrossRefGoogle Scholar
  30. IPCC (2014) Summary for policymakers. In: Climate Change 2014: impacts, adaptation, and vulnerability. Part A: global and sectoral aspects. Contribution of working group II to the fifth assessment report of the intergovernmental panel on climate change, Cambridge University Press, pp 1–32Google Scholar
  31. Ji F, Zhaohua W, Jianping H, Chassignet EP (2014) Evolution of land surface air temperature trend. Nat Clim Change 4(6):462–466. doi:10.1038/nclimate2223 CrossRefGoogle Scholar
  32. Joshi M, Gregory J, Webb M, Sexton D, Johns T (2008) Mechanisms for the land/sea warming contrast exhibited by simulations of climate change. Clim Dyn 30(5):455–465. doi:10.1007/s00382-007-0306-1 CrossRefGoogle Scholar
  33. Kirtman B et al (2013) Near-term climate change: projections and predictability. In: Climate Change 2013: the physical science basis. Contribution of working group I to the fifth assessment report of the intergovernmental panel on climate change, Cambridge University PressGoogle Scholar
  34. Klein RJT et al (2014) Adaptation opportunities, constraints, and limits. In: Climate Change 2014: impacts, adaptation, and vulnerability. Part A: global and sectoral aspects. Contribution of working group II to the fifth assessment report of the intergovernmental panel on climate change, Cambridge University Press, pp 899–943Google Scholar
  35. Liebmann B, Dole RM, Jones C, Bladé I, Allured D (2010) Influence of choice of time period on global surface temperature trend estimates. Bull Am Meteorol Soc 91(11):1485–1491. doi:10.1175/2010BAMS3030.1 CrossRefGoogle Scholar
  36. Liu C, Allan RP (2013) Observed and simulated precipitation responses in wet and dry regions 1850–2100. Environ Res Lett 8(3):034,002. doi:10.1088/1748-9326/8/3/034002 CrossRefGoogle Scholar
  37. Mahlstein I, Portmann RW, Daniel JS, Solomon S, Knutti R (2012) Perceptible changes in regional precipitation in a future climate. Geophys Res Lett 39(L05):701. doi:10.1029/2011GL050738 Google Scholar
  38. Maraun D (2013) When will trends in European mean and heavy daily precipitation emerge? Environ Res Lett 8(1):014,004. doi:10.1088/1748-9326/8/1/014004 CrossRefGoogle Scholar
  39. Masson-Delmotte V et al (2013) Information from paleoclimate archives. In: Climate Change 2013: the physical science basis. Contribution of working group I to the fifth assessment report of the intergovernmental panel on climate change, Cambridge University PressGoogle Scholar
  40. Meinshausen M, Smith S, Calvin K, Daniel J, Kainuma M, Lamarque JF, Matsumoto K, Montzka S, Raper S, Riahi K, Thomson A, Velders G, van Vuuren D (2011) The RCP greenhouse gas concentrations and their extensions from 1765 to 2300. Clim Change 109(1–2):213–241. doi:10.1007/s10584-011-0156-z CrossRefGoogle Scholar
  41. Mora C, Frazier AG, Longman RJ, Dacks RS, Walton MM, Tong EJ, Sanchez JJ, Kaiser LR, Stender YO, Anderson JM, Ambrosino CM, Fernandez-Silva I, Giuseffi LM, Giambelluca TW (2013) The projected timing of climate departure from recent variability. Nature 502(7470):183–187. doi:10.1038/nature12540 CrossRefGoogle Scholar
  42. Neelin JD (2007) Moist dynamics of tropical convection zones in monsoons, teleconnections, and global warming. In: Schneider T, Sobel A (eds) The global circulation of the atmosphere. Princeton University Press, Princeton, pp 267–301Google Scholar
  43. Neelin JD, Münnich M, Su H, Meyerson JE, Holloway CE (2006) Tropical drying trends in global warming models and observations. Proc Nat Acad Sci 103(16):6110–6115. doi:10.1073/pnas.0601798103 CrossRefGoogle Scholar
  44. O’Neill BC, Oppenheimer M (2004) Climate change impacts are sensitive to the concentration stabilization path. Proc Nat Acad Sci 101(47):16,411–16,416. doi:10.1073/pnas.0405522101 CrossRefGoogle Scholar
  45. Poli P, Hersbach H, Tan D, Dee D, Thépaut JN, Simmons A, Peubey C, Laloyaux P, Komori T, Berrisford P, Dragani R, Trémolet Y, Holm E, Bonavita M, Isaksen L, Fisher M (2013) The data assimilation system and initial performance evaluation of the ECMWF pilot reanalysis of the twentieth century assimilating surface observations only (ERA-20C). ERA Report Series (14)Google Scholar
  46. Polson D, Hegerl GC, Allan RP, Sarojini BB (2013) Have greenhouse gases intensified the contrast between wet and dry regions? Geophys Res Lett 40(17):4783–4787. doi:10.1002/grl.50923 CrossRefGoogle Scholar
  47. Roderick ML, Sun F, Farquhar GD (2012) Water cycle varies over land and sea. Science 336(6086):1230–1231. doi:10.1126/science.336.6086.1230-b CrossRefGoogle Scholar
  48. Seneviratne SI et al (2012) Changes in climate extremes and their impacts on the natural physical environment. In: Managing the risks of extreme events and disasters to advance climate change adaptation. A special report of working groups I and II of the intergovernmental panel on climate change (IPCC), Cambridge University PressGoogle Scholar
  49. Settele J, et al (2014) Terrestrial and inland water systems. In: Climate Change 2014: impacts, adaptation, and vulnerability. Part A: global and sectoral aspects. Contribution of working group II to the fifth assessment report of the intergovernmental panel on climate change, Cambridge University Press, pp 195–228Google Scholar
  50. Smith SJ, Edmonds J, Hartin CA, Mundra A, Calvin K (2015) Near-term acceleration in the rate of temperature change. Nat Clim Change 5:333–336. doi:10.1038/nclimate2552 CrossRefGoogle Scholar
  51. Street R, Jacob D, Parry M, Runge T, Scott J (2015) A European research and innovation roadmap for climate services. European Commission. doi:10.2777/702151
  52. Taylor KE, Stouffer RJ, Meehl GA (2011) An overview of CMIP5 and the experiment design. Bull Am Meteorol Soc 93(4):485–498. doi:10.1175/BAMS-D-11-00094.1 CrossRefGoogle Scholar
  53. Vecchi GA, Soden BJ (2007) Global warming and the weakening of the tropical circulation. J Clim 20(17):4316–4340. doi:10.1175/JCLI4258.1 CrossRefGoogle Scholar
  54. Vose RS, Schmoyer RL, Steurer PM, Peterson TC, Heim R, Karl TR, Eischeid JK (1992) The global historical climatology network: long-term monthly temperature, precipitation, sea level pressure, and station pressure data. Oak Ridge National Laboratory. doi:10.3334/CDIAC/cli.ndp041
  55. Zhang X, Zwiers FW, Hegerl GC, Lambert FH, Gillett NP, Solomon S, Stott PA, Nozawa T (2007) Detection of human influence on twentieth-century precipitation trends. Nature 448(7152):461–465. doi:10.1038/nature06025 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • Yann Chavaillaz
    • 1
  • Sylvie Joussaume
    • 1
  • Sandrine Bony
    • 2
  • Pascale Braconnot
    • 1
  1. 1.Laboratoire des Sciences du Climat et de l’Environnement (LSCE-IPSL) CEA/CNRS/UVSQGif-sur-Yvette CedexFrance
  2. 2.Laboratoire de Météorologie Dynamique (LMD-IPSL)CNRS/Université Pierre et Marie CurieParisFrance

Personalised recommendations