Climate Dynamics

, Volume 47, Issue 3–4, pp 879–893 | Cite as

Changes in the distribution of cold waves in France in the middle and end of the 21st century with IPSL-CM5 and CNRM-CM5 models

  • S. PareyEmail author
  • T. T. H. Hoang


In this paper, a stochastic model is used to simulate daily minimum temperature time series coming from observations and two CMIP5 climate models (IPSL-CM5A-MR and CNRM-CM5) in order to analyze the changes in cold wave number and proportions under future climate conditions. The stochastic model allows computing 100 temperature time series for each different source (observation or climate model), and for 22 locations in France, which enables inferring the statistical significance of the changes. Two future time periods, near (around 2010–2060) and far future (around 2050–2100), and two RCPs (RCP4.5 and RCP8.5) are considered, while 3 different thresholds are used to identify cold waves: 0 °C and the 10th and 5th percentiles of observed wintertime (December–January–February) daily minimum temperature distribution. The results show that both models project a significantly lower number of cold waves in the future, all durations considered, but the changes mainly concern the proportion of the longest cold waves (10 days and more). The decreases are higher with IPSL-CM5A-MR than with CNRM-CM5. The main driver of this change is the decreasing frequency of the observation based thresholds in the future, which is higher for IPSL-CM5-MR model because the impact of a higher mean is enhanced by a decrease in the variance.


Climate change Cold waves Stochastic modelling 



This work is supported by the SECIF project from the French National Research Agency (ANR). Special thanks to S. Denvil (IPSL) for providing the CMIP5 simulations, to Paul-Antoine Michelangeli (EDF/R&D) for preparing and managing the EDF climate model results database, and to G. Gayraud (Météo-France) for providing the SQR temperature time series.


  1. Cattiaux J, Douville H, Ribes A, Chauvin F, Plante C (2013a) Towards a better understanding of changes in wintertime cold extremes over Europe: a pilot study with CNRM and IPSL atmospheric models. Clim Dyn 40(9):2433–2445. doi: 10.1007/s00382-012-1436-7 CrossRefGoogle Scholar
  2. Cattiaux J, Quesada B, Arakélian A, Codron F, Vautard R, Yiou P (2013b) North-atlantic dynamics and European temperature extremes in the IPSL model: sensitivity to atmospheric resolution. Clim Dyn 40(9):2293–2310. doi: 10.1007/s00382-012-1529-3 CrossRefGoogle Scholar
  3. Dacunha-Castelle D, Hoang TTH, Parey S (2015) Modeling of air temperatures: preprocessing and trends, reduced stationary process, extremes, simulation. J Soc Fr Statistique 156(1):138–168Google Scholar
  4. de Vries H, Haarsma RJ, Hazeleger W (2012) Western European cold spells in current and future climate. Geophys Res Lett 39:L04706. doi: 10.1029/2011GL050665 CrossRefGoogle Scholar
  5. Dufresne J-L, Foujols M-A, Denvil S, Caubel A, Marti O, Aumont O, Balkanski Y, Bekki S, Bellenger H, Benshila R, Bony S, Bopp L, Braconnot P, Brockmann P, Cadule P, Cheruy F, Codron F, Cozic A, Cugnet D, de Noblet N, Duvel J-P, Ethé C, Fairhead L, Fichefet T, Flavoni S, Friedlingstein P, Grandpeix J-Y, Guez L, Guilyardi E, Hauglustaine D, Hourdin F, Idelkadi A, Ghattas J, Joussaume S, Kageyama M, Krinner G, Labetoulle S, Lahellec A, Lefebvre M-P, Lefevre F, Levy C, Li ZX, Lloyd J, Lott F, Madec G, Mancip M, Marchand M, Masson S, Meurdesoif Y, Mignot J, Musat I, Parouty S, Polcher J, Rio C, Schulz M, Swingedouw D, Szopa S, Talandier C, Terray P, Viovy N, Vuichard N (2013) Climate change projections using the IPSL-CM5 earth system model: from CMIP3 to CMIP5. Clim Dyn 40(9):2123–2165CrossRefGoogle Scholar
  6. Furrer EM, Katz RW, Walter MD, Furrer R (2010) Statistical modeling of hot spells and heat waves. Clim Res 43:191–205CrossRefGoogle Scholar
  7. Gibelin AL, Dubuisson B, Corre L, Deaux N, Jourdain S, Laval L, Piquemal JM, Mestre O, Dennetière D, Desmidt S, Tamburini A (2014) Evolution de la température en France depuis les années 1950: constitution d’un nouveau jeu de séries homogénéisées de référence. Météorologie 87:45–53. doi: 10.4267/2042/54336 CrossRefGoogle Scholar
  8. Hoang, T. T. H. (2010), Modélisation de séries chronologiques non stationnaires, non linéaires: application à la définition des tendances sur la moyenne, la variabilité et les extrêmes de la température de l’air en Europe, PhD thesis work (written in English),
  9. IPCC (2012): Managing the risks of extreme events and disasters to advance climate change adaptation. A special report of working groups I and II of the Intergovernmental Panel on Climate Change, Cambridge University Press, Cambridge, UK, and New York, NY, USA, 582 ppGoogle Scholar
  10. IPCC (2013) Climate change 2013: the physical science basis. In: Stocker TF, Qin D, Plattner G-K, Tignor M, Allen SK, Boschung J, Nauels A, Xia Y, Bex V, Midgley PM (eds) Contribution of working group I to the fifth assessment report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge. doi: 10.1017/CBO9781107415324 Google Scholar
  11. Maraun D, Wetterhall F, Ireson AM, Chandler RE et al (2010) Precipitation downscaling under climate change: recent developments to bridge the gap between dynamical models and the end user. Rev Geophys 48:RG3003. doi: 10.1029/2009RG000314 CrossRefGoogle Scholar
  12. Parey S, Dacunha-Castelle D, Hoang TTH (2010) Mean and variance evolutions of the hot and cold temperatures in Europe. Clim Dyn 34:345–369CrossRefGoogle Scholar
  13. Parey S, Hoang TTH, Dacunha-Castelle D (2013) The importance of mean and variance in predicting changes in temperature extremes. J Geophys Res 118:8285–8296. doi: 10.1002/jgrd.50629 Google Scholar
  14. Parey S, Hoang TTH, Dacunha-Castelle D (2014) Validation of a stochastic temperature generator focusing on extremes and an example of use for climate change. Clim Res 59:61–75CrossRefGoogle Scholar
  15. Peings Y, Cattiaux J, Douville H (2013) Evaluation and response of winter cold spells over western Europe in CMIP5 models. Clim Dyn 41:3025–3037. doi: 10.1007/s00382-012-1565-z CrossRefGoogle Scholar
  16. Schoetter R, Cattiaux J, Douville H (2015) Changes of western European heat wave characteristics projected by the CMIP5 ensemble. Clim Dyn 45(5):1601–1616CrossRefGoogle Scholar
  17. Sillmann J, Kharin VV, Zhang X, Zwiers SW, Bronaugh D (2013a) Climate extremes indices in the CMIP5 multimodel ensemble: Part 1. Model evaluation in the present climate. J Geophys Res Atmos 118:1716–1733. doi: 10.1002/jgrd.50203 CrossRefGoogle Scholar
  18. Sillmann J, Kharin VV, Zhang X, Zwiers SW, Bronaugh D (2013b) Climate extremes indices in the CMIP5 multimodel ensemble: Part 2. Future climate projections. J Geophys Res Atmos 118:2473–2493. doi: 10.1002/jgrd.50188 CrossRefGoogle Scholar
  19. Voldoire A, Sanchez-Gomez E, y Melia DS, Decharme B, Cassou C, Senesi S, Valcke S, Beau I, Alias A et al (2013) The CNRM-CM5.1 global climate model: description and basic evaluation. Clim Dyn 40(9):2091–2121. doi: 10.1007/s00382-011-1259-y CrossRefGoogle Scholar
  20. Wang W, Zhou W, Li Y, Wang XD (2015) Statistical modeling and CMIP5 simulations of hot spell changes in China. Clim Dyn 44:2859–2872CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  1. 1.EDF/R&D 6Chatou CedexFrance

Personalised recommendations