Climate Dynamics

, Volume 47, Issue 3–4, pp 805–815 | Cite as

Recent accelerating mass loss of southeast Tibetan glaciers and the relationship with changes in macroscale atmospheric circulations

  • Wei Yang
  • Xiaofeng Guo
  • Tandong Yao
  • Meilin Zhu
  • Yongjie Wang
Article

Abstract

The mass balance history (1980–2010) of a monsoon-dominated glacier in the southeast Tibetan Plateau is reconstructed using an energy balance model and later interpreted with regard to macroscale atmospheric variables. The results show that this glacier is characterized by significant interannual mass fluctuations over the past three decades, with a remarkably high mass loss during the recent period of 2003–2010. Analysis of the relationships between glacier mass balance and climatic variables shows that interannual temperature variability in the monsoonal season (June–September) is a primary driver of its mass balance fluctuations, but monsoonal precipitation tends to play an accentuated role for driving the observed glacier mass changes due to their covariation (concurrence of warm/dry and cold/wet climates) in the monsoon-influenced southeast Tibetan Plateau. Analysis of the atmospheric circulation pattern reveals that the predominance of anticyclonic/cyclonic circulations prevailing in the southeastern/northern Tibetan Plateau during 2003–2010 contributes to increased air temperature and decreased precipitation in the southeast Tibetan Plateau. Regionally contrasting atmospheric circulations explain the distinct mass changes between in the monsoon-influenced southeast Tibetan Plateau and in the north Tibetan Plateau/Tien Shan Mountains during 2003–2010. The macroscale climate change seems to be linked with the Europe-Asia teleconnection.

Keywords

Glacier mass balance Macroscale atmospheric circulations Southeast Tibetan Plateau 

Supplementary material

382_2015_2872_MOESM1_ESM.docx (87 kb)
Supplementary material 1 (DOCX 86 kb)

References

  1. Adler RF, Huffman GJ, Chang A, Ferraro R, Xie P-P, Janowiak J, Rudolf B, Schneider U, Curtis S, Bolvin D (2003) The version-2 global precipitation climatology project (GPCP) monthly precipitation analysis (1979–present). J Hydrometeorol 4(6):1147–1167CrossRefGoogle Scholar
  2. Bolch T, Kulkarni A, Kääb A, Huggel C, Paul F, Cogley J, Frey H, Kargel J, Fujita K, Scheel M (2012) The state and fate of Himalayan glaciers. Science 336(6079):310–314CrossRefGoogle Scholar
  3. Bothe O, Fraedrich K, Zhu X (2011) Large-scale circulations and Tibetan Plateau summer drought and wetness in a high-resolution climate model. Int J Climatol 31(6):832–846CrossRefGoogle Scholar
  4. Chen Y, Yang K, He J, Qin J, Shi J, Du J, He Q (2011) Improving land surface temperature modeling for dry land of China. J Geophys Res 116:D20104CrossRefGoogle Scholar
  5. Dee D, Uppala S, Simmons A, Berrisford P, Poli P, Kobayashi S, Andrae U, Balmaseda M, Balsamo G, Bauer P (2011) The ERA-Interim reanalysis: configuration and performance of the data assimilation system. Q J R Meteorol Soc 137(656):553–597CrossRefGoogle Scholar
  6. Duguay CR (1993) Radiation modeling in mountainous terrain review and status. Mt Res Dev 13(4):339–357CrossRefGoogle Scholar
  7. Feng L, Li T, Yu W (2014) Cause of severe droughts in Southwest China during 1951–2010. Clim Dyn 43(7–8):2033–2042CrossRefGoogle Scholar
  8. Fujita K, Ageta Y (2000) Effect of summer accumulation on glacier mass balance on the Tibetan Plateau revealed by mass-balance model. J Glaciol 46(153):244–252CrossRefGoogle Scholar
  9. Fujita K, Nuimura T (2011) Spatially heterogeneous wastage of Himalayan glaciers. Proc Natl Acad Sci USA 108(34):14011–14014CrossRefGoogle Scholar
  10. Gao Y, Wang H, Li S (2013) Influences of the Atlantic Ocean on the summer precipitation of the southeastern Tibetan Plateau. J Geophys Res 118(9):3534–3544Google Scholar
  11. Gardelle J, Berthier E, Arnaud Y (2012) Slight mass gain of Karakoram glaciers in the early twenty-first century. Nat Geosci 5(5):322–325CrossRefGoogle Scholar
  12. Gardelle J, Berthier E, Arnaud Y, Kääb A (2013) Region-wide glacier mass balances over the Pamir–Karakoram–Himalaya during 1999–2011. Cryosphere 7(4):1263–1286CrossRefGoogle Scholar
  13. Giesen RH, van den Broeke MR, Oerlemans J, Andreassen LM (2008) Surface energy balance in the ablation zone of Midtdalsbreen, a glacier in southern Norway: interannual variability and the effect of clouds. J Geophys Res 113:D21111CrossRefGoogle Scholar
  14. Hanna E, Jones JM, Cappelen J, Mernild SH, Wood L, Steffen K, Huybrechts P (2013) The influence of North Atlantic atmospheric and oceanic forcing effects on 1900–2010 Greenland summer climate and ice melt/runoff. Int J Climatol 33(4):862–880CrossRefGoogle Scholar
  15. He J, Kun Y (2011) China meteorological forcing dataset, cold and arid regions science data center at Lanzhou. doi:10.3972/westdc.002.2014.db
  16. Huffman GJ, Adler RF, Bolvin DT, Gu G, Nelkin EJ, Bowman KP, Hong Y, Stocker EF, Wolff DB (2007) The TRMM multisatellite precipitation analysis (TMPA): quasi-global, multiyear, combined-sensor precipitation estimates at fine scales. J Hydrometeorol 8(1):38–55CrossRefGoogle Scholar
  17. Immerzeel WW, Van Beek LP, Bierkens MF (2010) Climate change will affect the Asian water towers. Science 328(5984):1382–1385CrossRefGoogle Scholar
  18. Kääb A, Berthier E, Nuth C, Gardelle J, Arnaud Y (2012) Contrasting patterns of early twenty-first-century glacier mass change in the Himalayas. Nature 488(7412):495–498CrossRefGoogle Scholar
  19. Kääb A, Treichler D, Nuth C, Berthier E (2015) Brief communication: contending estimates of 2003–2008 glacier mass balance over the Pamir–Karakoram–Himalaya. Cryosphere 9(2):557–564CrossRefGoogle Scholar
  20. Kaser G, Grosshauser M, Marzeion B (2010) Contribution potential of glaciers to water availability in different climate regimes. Proc Natl Acad Sci USA 107(47):20223–20227CrossRefGoogle Scholar
  21. Li Z, He Y, Pu T, Jia W, He X, Pang H, Zhang N, Liu Q, Wang S, Zhu G (2010) Changes of climate, glaciers and runoff in China’s monsoonal temperate glacier region during the last several decades. Quatern Int 218(1):13–28Google Scholar
  22. Liu J, Xie Z (2013) Improving simulation of soil moisture in China using a multiple meteorological forcing ensemble approach. Hydrol Earth Syst Sci 17(9):3355–3369CrossRefGoogle Scholar
  23. Liu X, Yin Z (2001) Spatial and temporal variation of summer precipitation over the eastern Tibetan Plateau and the North Atlantic Oscillation. J Clim 14(13):2896–2909CrossRefGoogle Scholar
  24. Maussion F, Scherer D, Mölg T, Collier E, Curio J, Finkelnburg R (2014) Precipitation seasonality and variability over the Tibetan Plateau as resolved by the high Asia reanalysis. J Clim 27(5):1910–1927CrossRefGoogle Scholar
  25. Mölg T, Cullen NJ, Hardy DR, Kaser G, Klok L (2008) Mass balance of a slope glacier on Kilimanjaro and its sensitivity to climate. Int J Climatol 28(7):881–892CrossRefGoogle Scholar
  26. Mölg T, Maussion F, Scherer D (2013) Mid-latitude westerlies as a driver of glacier variability in monsoonal High Asia. Nat Clim Change 4(1):68–73CrossRefGoogle Scholar
  27. Neckel N, Kropáček J, Bolch T, Hochschild V (2014) Glacier mass changes on the Tibetan Plateau 2003–2009 derived from ICESat laser altimetry measurements. Environ Res Lett 9(1):014009CrossRefGoogle Scholar
  28. Oerlemans J, Knap W (1998) A 1 year record of global radiation and albedo in the ablation zone of Morteratschgletscher, Switzerland. J Glaciol 44(147):231–238Google Scholar
  29. Owen LA, Caffee MW, Finkel RC, Seong YB (2008) Quaternary glaciation of the Himalayan–Tibetan orogen. J Quat Sci 23(6–7):513–531CrossRefGoogle Scholar
  30. Pu J, Yao T, Yang M, Tian L, Wang N, Ageta Y, Fujita K (2008) Rapid decrease of mass balance observed in the Xiao (Lesser) Dongkemadi Glacier, in the central Tibetan Plateau. Hydrol Process 22(16):2953–2958CrossRefGoogle Scholar
  31. Radić V, Hock R (2011) Regionally differentiated contribution of mountain glaciers and ice caps to future sea-level rise. Nat Geosci 4(2):91–94CrossRefGoogle Scholar
  32. Richardson SD, Reynolds JM (2000) An overview of glacial hazards in the Himalayas. Quatern Int 65–6:31–47CrossRefGoogle Scholar
  33. Salerno F, Guyennon N, Thakuri S, Viviano G, Romano E, Vuillermoz E, Cristofanelli P, Stocchi P, Agrillo G, Ma Y, Tartari G (2015) Weak precipitation, warm winters and springs impact glaciers of south slopes of Mt. Everest (central Himalaya) in the last 2 decades(1994–2013). Cryosphere 9:1229–1247CrossRefGoogle Scholar
  34. Schneider SH (1972) Cloudiness as a global climatic feedback mechanism: the effects on the radiation balance and surface temperature of variations in cloudiness. J Atmos Sci 29(8):1413–1422CrossRefGoogle Scholar
  35. Sheffield J, Goteti G, Wood EF (2006) Development of a 50-year high-resolution global dataset of meteorological forcings for land surface modeling. J Clim 19(13):3088–3111CrossRefGoogle Scholar
  36. Shi Y, Liu S (2000) Estimation on the response of glaciers in China to the global warming in the 21st century. Chin Sci Bull 45(7):668–672CrossRefGoogle Scholar
  37. Shi Y, Liu C, Wang Z (2008) Concise glacier inventory of China. Shanghai Popular Science Press, ShanghaiGoogle Scholar
  38. Su Z, Shi YF (2002) Response of monsoonal temperate glaciers to global warming since the Little Ice Age. Quatern Int 97–8:123–131CrossRefGoogle Scholar
  39. Thakuri S, Salerno F, Smiraglia C, Bolch T, D’Agata C, Viviano G, Tartari G (2014) Tracing glacier changes since the 1960s on the south slope of Mt. Everest (central Southern Himalaya) using optical satellite imagery. Cryosphere 8(4):1297–1315CrossRefGoogle Scholar
  40. Thayyen RJ, Gergan J, Dobhal D (2005) Monsoonal control on glacier discharge and hydrograph characteristics, a case study of Dokriani Glacier, Garhwal Himalaya, India. J Hydrol 306(1):37–49CrossRefGoogle Scholar
  41. Tian L, Masson-Delmotte V, Stievenard M, Yao T, Jouzel J (2001) Tibetan Plateau summer monsoon northward extent revealed by measurements of water stable isotopes. J Geophys Res 106(D22):28081–28088CrossRefGoogle Scholar
  42. Vuille M, Kaser G, Juen I (2008) Glacier mass balance variability in the Cordillera Blanca, Peru and its relationship with climate and the large-scale circulation. Global Planet Change 62(1):14–28CrossRefGoogle Scholar
  43. Wagnon P, Linda A, Arnaud Y, Kumar R, Sharma P, Vincent C, Pottakkal JG, Berthier E, Ramanathan A, Hasnain SI (2007) Four years of mass balance on Chhota Shigri Glacier, Himachal Pradesh, India, a new benchmark glacier in the western Himalaya. J Glaciol 53(183):603–611CrossRefGoogle Scholar
  44. Wallace JM, Gutzler DS (1981) Teleconnections in the geopotential height field during the northern hemisphere winter. Mon Weather Rev 109(4):784–812CrossRefGoogle Scholar
  45. WGMS (2011) Glacier mass balance bulletin no. 11 (2008–2009). In: Zemp M, Nussbaumer SU, Gärtner-Roer I, Hoelzle M, Paul F, Haeberli W (eds) ICSU (WDS)/IUGG (IACS)/UNEP/UNESCO/WMO. World Glacier Monitoring Service, ZurichGoogle Scholar
  46. Xie Z, Su Z, Cao Z (1995) Water and mass balance in the Gongga mountain. In: Expert Committee on Qinghai-Xizang Project (eds) Researches on evolution, environment change and ecosystems of Tibet Plateau. Science Press, Beijing, pp 340–346 (in Chinese) Google Scholar
  47. Yang K, Koike T, Ye B (2006) Improving estimation of hourly, daily, and monthly solar radiation by importing global data sets. Agric For Meteorol 137(1):43–55CrossRefGoogle Scholar
  48. Yang W, Yao T, Xu B, Ma L, Wang Z, Wan M (2010) Characteristics of recent temperate glacier fluctuations in the Parlung Zangbo River basin, southeast Tibetan Plateau. Chin Sci Bull 55(20):2097–2102CrossRefGoogle Scholar
  49. Yang W, Guo X, Yao T, Yang K, Zhao L, Li S, Zhu M (2011) Summertime surface energy budget and ablation modeling in the ablation zone of a maritime Tibetan glacier. J Geophys Res 116:D14116CrossRefGoogle Scholar
  50. Yang W, Yao T, Guo X, Zhu M, Li S, Kattel DB (2013) Mass balance of a maritime glacier on the southeast Tibetan Plateau and its climatic sensitivity. J Geophys Res 118(17):9579–9594Google Scholar
  51. Yao T, Thompson L, Yang W, Yu W, Gao Y, Guo X, Yang X, Duan K, Zhao H, Xu B (2012) Different glacier status with atmospheric circulations in Tibetan Plateau and surroundings. Nat Clim Change 2(9):663–667CrossRefGoogle Scholar
  52. Yao Y, Zhao S, Zhang Y, Jia K, Liu M (2014) Spatial and decadal variations in potential evapotranspiration of China based on reanalysis datasets during 1982–2010. Atmosphere 5(4):737–754CrossRefGoogle Scholar
  53. Yatagai A, Arakawa O, Kamiguchi K, Kawamoto H, Nodzu MI, Hamada A (2009) A 44-year daily gridded precipitation dataset for Asia based on a dense network of rain gauges. Sola 5:137–140CrossRefGoogle Scholar
  54. Zemp M, Thibert E, Huss M, Stumm D, Denby CR, Nuth C, Nussbaumer SU, Moholdt G, Mercer A, Mayer C, Joerg PC, Jansson P, Hynek B, Fischer A, Escher-Vetter H, Elvehoy H, Andreassen LM (2013) Reanalysing glacier mass balance measurement series. Cryosphere 7(4):1227–1245CrossRefGoogle Scholar
  55. Zhang Y, Hirabayashi Y, Liu S (2012) Catchment-scale reconstruction of glacier mass balance using observations and global climate data: case study of the Hailuogou catchment, south-eastern Tibetan Plateau. J Hydrol 444:146–160CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • Wei Yang
    • 1
    • 2
  • Xiaofeng Guo
    • 3
  • Tandong Yao
    • 1
    • 2
  • Meilin Zhu
    • 1
  • Yongjie Wang
    • 1
  1. 1.Key Laboratory of Tibetan Environment Changes and Land Surface Processes, Institute of Tibetan Plateau ResearchChinese Academy of Sciences (CAS)BeijingChina
  2. 2.CAS Center for Excellence in Tibetan Plateau Earth SciencesBeijingChina
  3. 3.State Key Laboratory of Atmospheric Boundary Layer Physics and Atmospheric Chemistry, Institute of Atmospheric PhysicsChinese Academy of Sciences (CAS)BeijingChina

Personalised recommendations