Advertisement

Climate Dynamics

, Volume 47, Issue 3–4, pp 793–804 | Cite as

Multiyear predictability of Northern Hemisphere surface air temperature in the Kiel Climate Model

  • Y. Wu
  • M. Latif
  • W. Park
Article

Abstract

The multiyear predictability of Northern Hemisphere surface air temperature (SAT) is examined in a multi-millennial control integration of the Kiel Climate Model, a coupled ocean–atmosphere–sea ice general circulation model. A statistical method maximizing average predictability time (APT) is used to identify the most predictable SAT patterns in the model. The two leading APT modes are much localized and the physics are discussed that give rise to the enhanced predictability of SAT in these limited regions. Multiyear SAT predictability exists near the sea ice margin in the North Atlantic and mid-latitude North Pacific sector. Enhanced predictability in the North Atlantic is linked to the Atlantic Multidecadal Oscillation and to the sea ice changes. In the North Pacific, the most predictable SAT pattern is characterized by a zonal band in the western and central mid-latitude Pacific. This pattern is linked to the Pacific Decadal Oscillation, which drives sea surface temperature anomalies. The temperature anomalies subduct into deeper ocean layers and re-emerge at the sea surface during the following winters, providing multiyear memory. Results obtained from the Coupled Model Intercomparison Project Phase 5 ensemble yield similar APT modes. Overall, the results stress the importance of ocean dynamics in enhancing predictability in the atmosphere.

Keywords

Multiyear predictability Potential predictability AMO PDO 

Notes

Acknowledgments

We thank Liwei Jia in the Center for Ocean-Land–Atmosphere Studies (USA) for E-mail discussion about the APT method and Thomas Martin at GEOMAR for downloading the CMIP5 data. Y. Wu was financially supported by the China Scholarship Council (CSC). The work was also supported by the BMBF-RACE (No. 03F0651B) and EU-NACLIM (grant agreement No. 308299) projects. The KCM model integrations were conducted at the Computer Center of Kiel University.

References

  1. Alexander MA, Deser C (1995) A mechanism for the recurrence of wintertime midlatitude SST anomalies. J Phys Oceanogr 25:122–137. doi: 10.1175/1520-0485(1995)025<0122:AMFTRO>2.0.CO;2 CrossRefGoogle Scholar
  2. Alexander MA, Deser C, Timlin MS (1999) The reemergence of SST anomalies in the North Pacific Ocean. J Climate 12:2419–2433. doi: 10.1175/1520-0442(1999)012<2419:TROSAI>2.0.CO;2 CrossRefGoogle Scholar
  3. Ba J et al (2014) A multi-model comparison of Atlantic multidecadal variability. Clim Dyn 43:2333–2348. doi: 10.1007/s00382-014-2056-1 CrossRefGoogle Scholar
  4. Boer GJ (2004) Long time-scale potential predictability in an ensemble of coupled climate models. Clim Dyn 23:29–44. doi: 10.1007/s00382-004-0419-8 CrossRefGoogle Scholar
  5. Boer GJ (2009) Changes in interannual variability and decadal potential predictability under global warming. J Climate 22:3098–3109. doi: 10.1175/2008JCLI2835.1 CrossRefGoogle Scholar
  6. Boer GJ, Lambert SJ (2008) Multi-model decadal potential predictability of precipitation and temperature. Geophys Res Lett 35:L05706. doi: 10.1029/2008GL033234 CrossRefGoogle Scholar
  7. Branstator G, Teng H (2014) Is AMOC more predictable than North Atlantic heat content? J Climate 27:3537–3550. doi: 10.1175/JCLI-D-13-00274.1 CrossRefGoogle Scholar
  8. Branstator G, Teng H, Meehl GA et al (2012) Systematic estimates of initial-value decadal predictability for six AOGCMs. J Climate 25:1827–1846. doi: 10.1175/JCLI-D-11-00227.1 CrossRefGoogle Scholar
  9. Collins M, Botzet M, Carril AF et al (2006) Interannual to decadal climate predictability in the North Atlantic: a multimodel-ensemble study. J Climate 19:1195–1203. doi: 10.1175/JCLI3654.1 CrossRefGoogle Scholar
  10. Compo GP, Whitaker JS, Sardeshmukh PD et al (2011) The twentieth century reanalysis project. QJR Meteorol Soc 137:1–28. doi: 10.1002/qj.776 CrossRefGoogle Scholar
  11. Cunningham SA et al (2007) Temporal variability of the Atlantic meridional overturning circulation at 26.5°N. Science 317(5840):935–938. doi: 10.1126/science.1141304 CrossRefGoogle Scholar
  12. DelSole T, Tippett MK (2007) Predictability: recent insights from information theory. Rev Geophys 45:RG4002. doi: 10.1029/2006RG000202 CrossRefGoogle Scholar
  13. DelSole T, Tippett MK (2009a) Average predictability time. Part I: theory. J Atmos Sci 66:1172–1187. doi: 10.1175/2008JAS2868.1 CrossRefGoogle Scholar
  14. DelSole T, Tippett MK (2009b) Average predictability time. Part II: seamless diagnoses of predictability on multiple time scales. J Atmos Sci 66:1188–1204. doi: 10.1175/2008JAS2869.1 CrossRefGoogle Scholar
  15. DelSole T, Jia L, Tippett MK (2013) Decadal prediction of observed and simulated sea surface temperatures. Geophys Res Lett 40:2773–2778. doi: 10.1002/grl.50185 CrossRefGoogle Scholar
  16. Delworth T, Zeng F (2012) Multicentennial variability of the Atlantic meridional overturning circulation and its climatic influence in a 4000 year simulation of the GFDL CM2.1 climate model. Geophys Res Lett 39:L13702. doi: 10.1029/2012GL052107 CrossRefGoogle Scholar
  17. Delworth T, Manabe S, Stouffer RJ (1993) Interdecadal variations of the thermohaline circulation in a coupled ocean–atmosphere model. J. Climate 6:1993–2011. doi: 10.1175/1520-0442(1993)006<1993:IVOTTC>2.0.CO;2 CrossRefGoogle Scholar
  18. Deser C, Alexander MA, Timlin MS (2003) Understanding the persistence of sea surface temperature anomalies in midlatitudes. J Climate 16:57–72. doi: 10.1175/1520-0442(2003)016<0057:UTPOSS>2.0.CO;2 CrossRefGoogle Scholar
  19. Deser C, Magnusdottir G, Saravanan R, Phillips A (2004) The effects of North Atlantic SST and sea ice anomalies on the winter circulation in CCM3. Part II: direct and indirect components of the response. J Climate 17:877–889. doi: 10.1175/1520-0442(2004)017<0857:TEONAS>2.0.CO;2 CrossRefGoogle Scholar
  20. Enfield DB, Mestas-Nunez AM, Trimble PJ (2001) The Atlantic multidecadal oscillation and its relationship to rainfall and river flows in the continental US. Geophys Res Lett 28:2077–2080CrossRefGoogle Scholar
  21. Flato G et al (2013) Evaluation of Climate Models. In: Stocker TF, Qin D, Plattner G-K, Tignor M, Allen SK, Boschung J, Nauels A, Xia Y, Bex V, Midgley PM (eds) Climate change 2013: the physical science basis. Contribution of Working Group I to the fifth assessment report of the Intergovernmental Panel on Climate Change. Cambridge University Press, CambridgeGoogle Scholar
  22. Jia L, DelSole T (2011) Diagnosis of multiyear predictability on continental scales. J Climate 24:5108–5124. doi: 10.1175/2011JCLI4098.1 CrossRefGoogle Scholar
  23. Jia L, DelSole T (2013) Multi-year predictability of temperature and precipitation in multiple climate models. Geophys Res Lett 39:L17705. doi: 10.1029/2012GL052778 Google Scholar
  24. Kaplan A, Cane M, Kushnir Y et al (1998) Analyses of global sea surface temperature 1856-1991. J Geophys Res 103(18):567–589Google Scholar
  25. Kerr RA (2000) A North Atlantic climate pacemaker for the centuries. Science 288(5473):1984–1986CrossRefGoogle Scholar
  26. Knight JR, Allan RJ, Folland CK, Vellinga M, Mann ME (2005) A signature of persistent natural thermohaline circulation cycles in observed climate. Geophys Res Lett 32:L20708. doi: 10.1029/2005GL024233 CrossRefGoogle Scholar
  27. Latif M, Collins M, Pohlmann H, Keenlyside N (2006) A review of predictability studies of atlantic sector climate on decadal time scales. J Climate 19:5971–5987. doi: 10.1175/JCLI3945.1 CrossRefGoogle Scholar
  28. Latif M, Martin T, Park W (2013) Southern ocean sector centennial climate variability and recent decadal trends. J Climate 26:7767–7782. doi: 10.1175/JCLI-D-12-00281.1 CrossRefGoogle Scholar
  29. Lorenz EN (1963) Deterministic nonperiodic flow. J Atmos Sci 20:130–141. doi: 10.1175/1520-0469(1963)020<0130:DNF>2.0.CO;2 CrossRefGoogle Scholar
  30. Lorenz EN (1975) The physical bases of climate and climate modelling. In: Climate predictability, vol 16. GARP Publication Series 132–136. WMO, SwitzerlandGoogle Scholar
  31. Lumpkin R, Speer K (2003) Large-scale vertical and horizontal circulation in the North Atlantic Ocean. J Phys Oceanogr 33:1902–1920. doi: 10.1175/1520-0485(2003)033<1902:LVAHCI>2.0.CO;2 CrossRefGoogle Scholar
  32. Madec G (2008) NEMO reference manual, ocean dynamics component: NEMO-OPA. Preliminary version, Note Pole Model. 27, Inst. PierreSimon Laplace, ParisGoogle Scholar
  33. Mantua NJ, Hare SR, Zhang Y et al (1997) A Pacific interdecadal climate oscillation with impacts on salmon production. Bull Am Meteor Soc 78:1069–1079. doi: 10.1175/1520-0477(1997)078<1069:APICOW>2.0.CO;2 CrossRefGoogle Scholar
  34. Martin T, Park W, Latif M (2013) Multi-centennial variability controlled by southern ocean convection in the Kiel Climate Model. Clim Dyn 40(7):2005–2022. doi: 10.1007/s00382-012-1586-7 CrossRefGoogle Scholar
  35. Meehl GA, Goddard L, Murphy J et al (2009) Decadal prediction. Bull Am Meteor Soc 90:1467–1485. doi: 10.1175/2009BAMS2778.1 CrossRefGoogle Scholar
  36. Park W, Latif M (2008) Multidecadal and multicentennial variability of the meridional overturning circulation. Geophys Res Lett 35:L22703. doi: 10.1029/2008GL035779 CrossRefGoogle Scholar
  37. Park W, Latif M (2010) Pacific and Atlantic multidecadal variability in the Kiel Climate Model. Geophys Res Lett 37:L24702. doi: 10.1029/2010GL045560 Google Scholar
  38. Park W, Keenlyside N, Latif M et al (2009) Tropical Pacific climate and its response to global warming in the Kiel Climate Model. J Climate 22:71–92. doi: 10.1175/2008JCLI2261.1 CrossRefGoogle Scholar
  39. Pohlmann H, Sienz F, Latif M (2006) Influence of the multidecadal Atlantic meridional overturning circulation variability on European climate. J Climate 19:6062–6067. doi: 10.1175/JCLI3941.1 CrossRefGoogle Scholar
  40. Rayner NA, Parker DE, Horton EB et al (2003) Global analyses of sea surface temperature, sea ice, and night marine air temperature since the late nineteenth century. J Geophys Res 108(D14):4407. doi: 10.1029/2002JD002670 CrossRefGoogle Scholar
  41. Roeckner E et al (2003) The atmospheric general circulation model ECHAM5. Part I: model description, Rep. 349. Max Planck Institute for Meteorology, Hamburg, 127 ppGoogle Scholar
  42. Taylor KE, Stouffer RJ, Meehl GA (2012) An overview of CMIP5 and the experiment design. Bull Am Meteor Soc 93:485–498. doi: 10.1175/BAMS-D-11-00094.1 CrossRefGoogle Scholar
  43. Van der Swaluw E, Drijfhout SS, Hazeleger W (2007) Bjerknes compensation at high northern latitudes: the ocean forcing the atmosphere. J Climate 20:6023–6032. doi: 10.1175/2007JCLI1562.1 CrossRefGoogle Scholar
  44. Wang C et al (2014) A global perspective on CMIP5 climate model biases. Nat Climate Change 4:201–205. doi: 10.1038/nclimate2118 CrossRefGoogle Scholar
  45. Yang X et al (2013) A predictable AMO-like pattern in the GFDL fully coupled ensemble initialization and decadal forecasting system. J Climate 26:650–661. doi: 10.1175/JCLI-D-12-00231.1 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  1. 1.GEOMAR Helmholtz Centre for Ocean Research KielKielGermany
  2. 2.University of KielKielGermany

Personalised recommendations