Climate Dynamics

, Volume 47, Issue 1–2, pp 667–678 | Cite as

Global patterns of solar influence on high cloud cover

  • Mihai Dima
  • Mirela Voiculescu


One of the main sources of uncertainty in climate projections is represented by clouds, which have a profound influence on the Earth’s radiation budget through the feedbacks in which they are involved. The improvement of clouds representation in General Circulation Models relies largely on constraints derived from observations and on correct identification of processes that influence cloud formation or lifetime. Here we identify solar forced high cloud cover (HCC) patterns in reanalysis and observed data extending over the 1871–2009 period, based on their associations with known fingerprints of the same forcing on surface air temperature, sea surface temperature (SST) and sea level pressure fields. The solar influence on HCC has maximum amplitudes over the Pacific basin, where HCC anomalies are distributed in bands of alternating polarities. The colocation of the HCC and SST anomalies bands indicates a thermal influence on high clouds through convection and an amplification of the HCC anomalies by a positive feedback of long-wave fluxes, which increases the solar signal. Consistent with numerical simulations, the solar forced HCC pattern appears to be generated through a constructive interference between the so-called “top-down” and “bottom-up” mechanisms of solar influence on climate and is amplified by ocean–atmosphere positive feedbacks.


High clouds Solar forcing Pacific Ocean Convection 



This work was supported by project PN-II-ID-PCE-2011-3-0709, SOLACE (IDEI 283) of the Romanian National Authority for Scientific Research, CNCS, UEFISCDI. ISCCP project is acknowledged for the cloud data. Support for the Twentieth Century Reanalysis Project dataset is provided by the U.S. Department of Energy, Office of Science Innovative and Novel Computational Impact on Theory and Experiment program, and Office of Biological and Environmental Research, and by the National Oceanic and Atmospheric Administration Climate Program Office. We thank two anonymous reviewers for their constructive comments, which contributed to a significant improvement of the manuscript.


  1. Allan R, Ansell T (2006) A new globally complete monthly historical gridded mean sea level pressure dataset (HadSLP2): 1850–2004. J Clim 19:5816–5842CrossRefGoogle Scholar
  2. Camp CD, Tung KK (2007) Surface warming by the solar cycle revealed by the composite mean difference projection. Geophys Res Lett 34:L14703. doi: 10.1029/2007GL030207 CrossRefGoogle Scholar
  3. Chiang JCH, Vimont DJ (2004) Analogous pacific and Atlantic meridional modes of tropical atmosphere-ocean variability. J Clim 17:4143–4158. doi: 10.1175/JCLI4953.1 CrossRefGoogle Scholar
  4. Colman R (2002) Geographical contributions to global climate sensitivity in a general circulation model. Global Planet Chang 32:211–243CrossRefGoogle Scholar
  5. Compo GP, Whitaker JS et al (2011) The twentieth century reanalysis project. QJR Meteorol Soc 137:1–28. doi: 10.1002/qj.776 CrossRefGoogle Scholar
  6. Dima M, Lohmann G, Rimbu N (2005) Solar-induced and internal climate variability at decadal time scales. Int J Climatol 25:713–733CrossRefGoogle Scholar
  7. Erlykin AD, Sloan T, Wolfendale AW (2010) Correlations of clouds, cosmic rays and solar irradiation over the earth. J Atmos Sol Terr Phys 72:151–156. doi: 10.1016/j.jastp.2009.11.002 CrossRefGoogle Scholar
  8. Evan AT, Heidinger AK, Vimont DJ (2007) Arguments against a physical long-term trend in global ISCCP cloud amounts. Geophys Res Lett 34:L04701. doi: 10.1029/2006GL028083 CrossRefGoogle Scholar
  9. Feng J, Li J (2013) Contrasting impacts of two types of ENSO on the boreal spring hadley circulation. J Clim 26:4773–4789CrossRefGoogle Scholar
  10. Furtado JC, Lorenzo ED, Anderson BT, Schneider N (2012) Linkages between the North Pacific Oscillation and central tropical Pacific SSTs at low frequencies. Clim Dyn 39:2833–2846CrossRefGoogle Scholar
  11. Gray LJ, Beer J et al (2010) Solar influences on climate. Rev Geophys 48:1–53CrossRefGoogle Scholar
  12. Hahn CJ, Rossow WB, Warren SG (2001) ISCCP cloud properties associated with standard cloud types identified in individual surface observations. J Clim 14:11–28. doi: 10.1175/1520-0442 CrossRefGoogle Scholar
  13. Haigh JD (1996) The impact of solar variability on climate. Science 272:981–984CrossRefGoogle Scholar
  14. Haigh JD (1999) A GCM study of climate change in response to the 11-year solar cycle. Q J R Meteorol Soc 125:871–892CrossRefGoogle Scholar
  15. Haigh JD, Blackburn M, Day R (2005) The response of tropospheric circulation to perturbations in lower-stratospheric temperature. J Clim 18:3672–3685CrossRefGoogle Scholar
  16. Harrison RG, Stephenson DB (2006) Empirical evidence for a nonlinear effect of galactic cosmic rays on clouds. Proc R Soc A Math Phys Eng Sci 462(2068):1221–1233CrossRefGoogle Scholar
  17. Harrison RG, Nicoll KA, McWilliams KA (2013) Space weather driven changes in lower atmosphere phenomena. J Atm Sol Terr Phys 98:22–30. doi: 10.1016/j.jastp.2013.03.008 CrossRefGoogle Scholar
  18. Hong SY, Pan HL (1996) Nonlocal boundary layer vertical diffusion in a medium-range forecast model. Mon Weav Rev 124:2322–2339CrossRefGoogle Scholar
  19. Hong SY, Pan HL (1998) Convective trigger function for a mass-flux cumulus parametrization scheme. Mon Weav Rev 126:2599–2620CrossRefGoogle Scholar
  20. Hong PK, Miyahara H, Yokoyama Y, Takahashi Y, Sato M (2011) Implications for the low latitude cloud formations from solar activity and the quasi-biennial oscillation. J Atmos Sol Terr Phys 73:587–591. doi: 10.1016/j.jastp.2010.11.026 CrossRefGoogle Scholar
  21. Hood L, Schimanke S, Spangehl T, Bal S, Cubasch U (2013) The surface climate response to 11-yr solar forcing during northern winter: observational analyses and comparisons with GCM simulations. J Clim 26:7489–7506CrossRefGoogle Scholar
  22. Hou YT, Campana KA, Yang SK (2002) Parametrization of solar radiation transfer in the NCEP models. NCEP Office Note 441:33Google Scholar
  23. Kim YJ, Arakawa A (1995) Improvement of orographic gravity wave parametrization using a mesoscale gravity wave model. J Atmos Sci 52:1875–1902CrossRefGoogle Scholar
  24. Klein SA, Zhang Y, Zelinka MD, Pincus R, Boyle J, Gleckler PJ (2013) Are climate model simulations of clouds improving? An evaluation using the ISCCP simulator. J Geophys Res Atmos 118:1329–1342. doi: 10.1002/jgrd.50141 CrossRefGoogle Scholar
  25. Kodama C, Noda AT, Satoh M (2012) An assessment of the cloud signals simulated by NICAM using ISCCP, CALIPSO, and CloudSat satellite simulators. J Geophys Res 117:D12210. doi: 10.1029/2011JD017317 CrossRefGoogle Scholar
  26. Kodera K, Kuroda Y (2002) Dynamical response to the solar cycle. J Geophys Res 107(D24):ACL5-1–ACL5-12. doi: 10.1029/2002JD002224 CrossRefGoogle Scholar
  27. Kristjansson JE, Stjern CW, Stordal F, Fjaeraa AM, Myhre G, Jonasson K (2008) Cosmic rays, cloud condensation nuclei and clouds—a reassessment using MODIS data. Atmos Chem Phys 8:7373–7387. doi: 10.5194/acp-8-7373-2008 CrossRefGoogle Scholar
  28. Labitzke K, van Loon H (1988) Associations between the 11-year solar cycle, the QBO and the atmosphere. Part I: The troposphere and stratosphere in the northern hemisphere winter. J Atmos Terr Phys 50:197–206CrossRefGoogle Scholar
  29. Lean J (2000) Evolution of the sun’s spectral irradiance since the maunder minimum. Geophys Res Lett 27(16):2425–2428CrossRefGoogle Scholar
  30. Lian T, Chen D (2012) An evaluation of rotated EOF analysis and its application to tropical pacific SST variability. J Clim 25:5361–5373CrossRefGoogle Scholar
  31. Lohmann G, Rimbu N, Dima M (2004) Climate signature of solar irradiance variations: analysis of long-term instrumental, historical, and proxy data. Int J Climatol 24:1045–1056. doi: 10.1002/joc.1054 CrossRefGoogle Scholar
  32. Marsh N, Svensmark H (2000) Low cloud properties influenced by cosmic rays. Phys Rev Lett 85:5004–5007. doi: 10.1103/PhysRevLett.85.5004 CrossRefGoogle Scholar
  33. Meehl GA, Arblaster JM (2009) A lagged warm event-like response to peaks in solar forcing in the pacific region. J Clim 22:3647–3660. doi: 10.1175/2009JCLI2619.1 CrossRefGoogle Scholar
  34. Meehl GA, Arblaster JM, Branstator G (2008) A coupled air-sea response mechanism to solar forcing in the pacific region. J Clim 21:2883–2897CrossRefGoogle Scholar
  35. Meehl GA, Arblaster JM, Matthes K, Sassi F, van Loon H (2009) Amplifying the pacific climate system response to a small 11-year solar cycle forcing. Science 325:1114–1118. doi: 10.1126/science.117287 CrossRefGoogle Scholar
  36. Ney EP (1959) Cosmic radiation and the weather. Nature 183:451–454. doi: 10.1038/183451a0 CrossRefGoogle Scholar
  37. Norris JR (2005) Multidecadal changes in near-global cloud cover and estimated cloud cover radiative forcing. J Geophys Res 110:D08206. doi: 10.1029/2004JD005600 Google Scholar
  38. Pallé E (2005) Possible satellite perspective effects on the reported correlations between solar activity and clouds. Geophys Res Lett 32(3):L03802CrossRefGoogle Scholar
  39. Pincus R, Platnick S, Ackerman SA, Hemler RS, Hofmann RJP (2012) Reconciling simulated and observed views of clouds: MODIS, ISCCP, and the limits of instrument simulators. J Clim 25:4699–4720. doi: 10.1175/JCLI-D-11-00267.1 CrossRefGoogle Scholar
  40. Randall DA, Wood RA et al (2007) Cilmate models and their evaluation. In: Solomon S, Qin D, Manning M, Chen Z, Marquis M, Averyt KB, Tignor M, Miller HL (eds) Climate change, the physical science basis. Contribution of working group I to the fourth assessment report of the intergovernmental panel on climate change. Cambridge University Press, CambridgeGoogle Scholar
  41. Rayner NA, Parker DE, Horton EB, Folland CK, Alexander LV, Rodwell DP, Kent EC, Kaplan A (2003) Global analyses of sea surface temperature, sea ice, and night marine air temperature since the late nineteenth century. J Geophys Res 108:2-1–2-22, doi:  10.1029/2002JD002670
  42. Rind DH, Lean JL, Jonas J (2014) The impact of different absolute solar irradiance values on current climate model simulations. J Clim 27:1100–1120CrossRefGoogle Scholar
  43. Rossow WB, Walker AW, Beuschel DE, Roiter MD (1996) International satellite cloud climatology project (ISCCP): documentation of new cloud datasets. WMO/TD-737, World Meteorol. Org., Geneva. p 115Google Scholar
  44. Roy I, Haigh J (2010) Solar cycle signals in sea level pressure and sea surface temperature. Atmos Chem Phys 10:3147–3153. doi: 10.5194/acp-10-3147-2010 CrossRefGoogle Scholar
  45. Saha S et al (2006) The NCEP climate forecast system. J Clim 19:3483–3517CrossRefGoogle Scholar
  46. Shindell DT, Schmidt GA, Mann ME, Rind D, Waple A (2001) Solar forcing of regional climate change during the maunder minimum. Science 294:2149–2152CrossRefGoogle Scholar
  47. Soden BJ, Vecchi GA (2011) The vertical distribution of cloud feedback in coupled ocean-atmosphere models. Geophys Res Lett 38:1–6. doi: 10.1029/2011GL047632 CrossRefGoogle Scholar
  48. Stephens GL (2005) Cloud feedbacks in the climate system. J Clim 18:237–273. doi: 10.1175/JCLI-3243.1 CrossRefGoogle Scholar
  49. Takahashi Y, Okazaki Y, Sato M, Miyahara H, Sakanoi K, Hong PK (2010) 27-day variation in cloud amount and relationship to the solar cycle. Atmos Chem Phys 10:1577–1584. doi: 10.5194/acp-10-1577-2010 CrossRefGoogle Scholar
  50. Tinsley BA (2000) Influence of solar wind on the global electric circuit, and inferred effects on cloud microphysics, temperature, and dynamics in the troposphere. Space Sci Rev 94(1–2):231–258. doi: 10.1023/A:1026775408875 CrossRefGoogle Scholar
  51. Tung KK, Camp CD (2008) Solar cycle warming at the earth’s surface in NCEP and ERA-40 data: a linear discriminant analysis. J Geophys Res 113:D05114. doi: 10.1029/2007JD009164 CrossRefGoogle Scholar
  52. Udelhofen P, Cess R (2001) Cloud cover variations over the United States: an influence of cosmic rays or solar variability? Geophys Res Lett 28(13):2617–2620. doi: 10.1029/2000GL012659 CrossRefGoogle Scholar
  53. Usoskin IG, Mursula K, Kananen H, Kovaltsov GA (2001) Dependence of cosmic rays on solar activitati for odd and even solar cycles. Adv Space Res 27(3):571–576CrossRefGoogle Scholar
  54. Usoskin IG, Marsh N, Kovaltsov GA, Mursula K, Gladysheva OG (2004) Latitudinal dependence of low cloud amount on cosmic ray induced ionization. Geophys Res Lett 31:L16109CrossRefGoogle Scholar
  55. Usoskin I, Voiculescu M, Kovaltsov G, Mursula K (2006) Correlation between clouds at different altitudes and solar activity: fact or artifact? J Atmos Sol Terr Phys 68:2164–2172. doi: 10.1016/j.jastp.2006.08.005 CrossRefGoogle Scholar
  56. van Loon H, Meehl GA (2008) The response in the Pacific to the sun’s decadal peaks and contrasts to cold events in the Southern oscillation. J Atmos Terr Phys 70:1046–1055CrossRefGoogle Scholar
  57. van Loon H, Meehl GA, Shea DJ (2007) Coupled air-sea response to solar forcing in the Pacific region during northern winter. J Geophys Res 112:1–8Google Scholar
  58. Voiculescu M, Usoskin I (2012) Persistent solar signatures in cloud cover: spatial and temporal analysis. Environ Res Lett 7:044004. doi: 10.1088/1748-9326/7/4/044004 CrossRefGoogle Scholar
  59. Voiculescu M, Usoskin I, Mursula K (2006) Different response of clouds at the solar input. Geophys Res Lett 33:L21802CrossRefGoogle Scholar
  60. Voiculescu M, Usoskin IG, Mursula K (2007) Effect of ENSO and volcanic events on the Sun-cloud link. Adv Space Res 40:1140–1145CrossRefGoogle Scholar
  61. Voiculescu M, Usoski IG, Bota-Condurache S (2013) Clouds blown by solar wind. Environ Res Lett 8:045032. doi: 10.1088/1748-9326/8/4/045032 CrossRefGoogle Scholar
  62. von Storch HV, Zwiers FW (1999) Statistical analysis in climate research. Cambridge University Press, Cambridge, p 484CrossRefGoogle Scholar
  63. Wang C, Fiedler PC (2006) ENSO variability and the eastern tropical Pacific: a review. Prog Oceanogr 69:239–266CrossRefGoogle Scholar
  64. Wang YM, Lean JL, Sheeley NR (2005) Modeling the sun’s magnetic field and irradiance since 1713. Astrophys J 625:522–538CrossRefGoogle Scholar
  65. Warren SG, Hahn CJ, London J (1985) Simultaneous occurrence of different cloud types. J Appl Meteorol 24:658CrossRefGoogle Scholar
  66. White WB, Lean J, Cayan DR, Dettinger MD (1997) Response of global upper ocean temperature to changing solar irradiance. J Geophys Res 102:3255–3266CrossRefGoogle Scholar
  67. Wood KR, Overland JE (2010) Early 20th century arctic warming in retrospect. Int J Clim 30:1269–1279. doi: 10.1002/joc.1973 Google Scholar
  68. Wu L, Cai W, Zhang L, Nakamura H, Timmerman A, Joyce T, McPhaden MJ, Alexander M, Qiu B, Visbeck M, Chang P, Giese B (2012) Enhanced warming over the global subtropical western boundary currents. Nat Clim Chang 2:161–166. doi: 10.1038/nclimate1353 CrossRefGoogle Scholar
  69. Yu F (2002) Altitude variations of cosmic ray induced production of aerosols: implications for global cloudiness and climate. J Geophys Res 107:1118–1127CrossRefGoogle Scholar
  70. Yu F, Luo G (2014) Effect of solar variations on particle formation and cloud condensation nuclei. Environ Res Lett 9:045004. doi: 10.1088/1748-9326/9/4/045004 CrossRefGoogle Scholar
  71. Zelinka MD, Hartmann DL (2011) The observed sensitivity of high clouds to mean surface temperature anomalies in the tropics. J Geophys Res 116:D23103. doi: 10.1029/2011JD016459 CrossRefGoogle Scholar
  72. Zib BJ, Dong X, Xi B, Kennedy A (2012) Evaluation and Intercomparison of cloud fraction and radiative fluxes in recent reanalyses over the arctic using BSRN surface observations. J Clim 25:2291–2305CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  1. 1.Faculty of PhysicsUniversity of BucharestBucharestRomania
  2. 2.University “Dunărea de Jos” of GalaţiGalaţiRomania

Personalised recommendations