Climate Dynamics

, Volume 47, Issue 1–2, pp 375–392 | Cite as

Seasonal-to-interannual variability of the barrier layer in the western Pacific warm pool associated with ENSO

Article

Abstract

This study investigates the seasonal-to-interannual variability of the barrier layer (BL) associated with El Niño/Southern Oscillation (ENSO) using in situ temperature-salinity observations and simple ocean assimilation data (SODA). The comparisons with the BL derived from the in situ observations show that SODA successfully captures the variability of the BL in the Pacific warm pool. On seasonal timescale, based on the empirical orthogonal function (EOF) analysis, we identify that three seasonal leading modes of the BL along the equatorial Pacific are closely associated with the transition, resurgence and onset of ENSO, respectively. We also confirm that two interannual leading modes of the BL are related to different flavors of ENSO events. EOF1 mainly embodies a combined response to the central and east Pacific ENSO events while EOF2 is related to the central Pacific ENSO events. We especially focus on the contrast of the BL between east Pacific El Niño (EPEN) and central Pacific El Niño (CPEN). During EPEN, the abnormally thick BL appears in the east of the dateline. It follows the sea surface salinity front to shift zonally with the evolution of EPEN event, and propagates toward the central Pacific. It can be attributed to horizontal ocean advection, heavy precipitation and the downwelling Kelvin waves. In contrast, during CPEN, the abnormally thick BL is confined to the region between 160°E and 180°E around the SSS front without significant west–east displacement. It is mainly dominated by the local processes including Ekman pumping, precipitation, and zonal ocean advection. Different from the BL in the EPEN events, it has no evident basin-scale propagating signal.

Keywords

Pacific warm pool Barrier layer Sea surface salinity El Niño/Southern Oscillation East Pacific El Niño Central Pacific El Niño 

Notes

Acknowledgments

This study is supported by the National Basic Research Program of China (2013CB430304), National Natural Science Foundation (41106005, 41176003, 41206178, 41376015, 41376013, and 41306006), National High-Tech R&D Program (2013AA09A505) of China, and Global Change and Air-Sea Interaction of China (GASI-IPOVAI-04, GASI-01-01-12).

References

  1. Ando K, McPhaden MJ (1997) Variability of surface layer hydrography in the tropical Pacific Ocean. J Geophys Res 102:23063–23078CrossRefGoogle Scholar
  2. Ashok K, Yamagata T (2009) Climate change: The El Niño with a difference. Nature 461:481–484CrossRefGoogle Scholar
  3. Balaguru K, Chang P, Saravanan R, Leung LR, Xu Z, Li MK, Hsieh JS (2012) Ocean barrier layers’ effect on tropical cyclone intensification. PNAS 109(36):14343–14347CrossRefGoogle Scholar
  4. Battisti DS, Hirst AC (1989) Interannual variability in a tropical atmosphere–ocean model: influence of the basic state, ocean geometry and nonlinearity. J Clim 46:1687–1712Google Scholar
  5. Bosc C, Delcroix T, Maes C (2009) Barrier layer variability in the western Pacific warm pool from 2000 to 2007. J Geophys Res 114:C06023. doi:10.1029/2008JC005187 CrossRefGoogle Scholar
  6. Carton JA, Giese B (2008) A reanalysis of ocean climate using Simple Ocean Data Assimilation (SODA). Mon Weather Rev 136:2999–3017CrossRefGoogle Scholar
  7. Carton JA, Chepurin G, Cao X, Giese B (2000) A simple ocean data assimilation analysis of the global upper ocean 1950–95. Part I: methodology. J Phys Oceanogr 30:294–309CrossRefGoogle Scholar
  8. Chu PC, Liu QY, Jia YL, Fan CW (2002) Evidence of barrier layer in the Sulu and Celebes Seas. J Phys Oceanogr 32:3299–3309CrossRefGoogle Scholar
  9. Compo GP et al (2011) The twentieth century reanalysis project. Q J R Meteorol Soc 137:1–28CrossRefGoogle Scholar
  10. Cronin MF, McPhaden MJ (2002) Barrier layer formation during westerly wind bursts. J Geophys Res 107(C12):8020. doi:10.1029/2001JC001171 CrossRefGoogle Scholar
  11. de Boyer Montégut C, Mignot J, Lazar A, Cravatte S (2007) Control of salinity on the mixed layer depth in the world ocean: 1. General description. J Geophys Res 112:C06011. doi:10.1029/2006JC003953 CrossRefGoogle Scholar
  12. Kao HY, Yu JY (2009) Contrasting eastern Pacific and central Pacific types of ENSO. J Clim 22:615–632CrossRefGoogle Scholar
  13. Kug JS, Jin FF, An SI (2009) Two types of El Niño events: cold tongue El Niño and warm pool El Niño. J Clim 22:1499–1515CrossRefGoogle Scholar
  14. Lai AWC, Herzog M, Graf HF (2015) Two key parameters for the El niño continuum: zonal wind anomalies and Western Pacific subsurface potential temperature. Clim Dyn. doi:10.1007/s00382-015-2550-0 Google Scholar
  15. Larson S, Kirtman BP (2014) The Pacific meridional mode as an ENSO precursor and predictor in the North American multimodel ensemble. J Clim 27:7018–7032CrossRefGoogle Scholar
  16. Lee T, McPhaden MJ (2010) Increasing intensity of El niño in the central-equatorial Pacific. Geophys Res Lett 37:L14603. doi:10.1029/2005GL022860 Google Scholar
  17. Lee S-K, DiNezio PN, Chung E-S, Yeh S-W, Wittenberg AT, Wang C (2014a) Spring persistence, transition, and resurgence of El Niño. Geophys Res Lett. doi:10.1002/2014GL062484 Google Scholar
  18. Lee S-K, Mapes BE, Wang C, Enfield DB, Weaver SJ (2014b) Springtime ENSO phase evolution and its relation to rainfall in the continental US. Geophys Res Lett 41:1673–1680CrossRefGoogle Scholar
  19. Lian T, Chen D, Tang Y, Wu Q (2014) Effects of westerly wind bursts on El Niño: a new perspective. Geophys Res Lett 41:3522–3527CrossRefGoogle Scholar
  20. Liu H, Grodsky SA, Carton JA (2009) Observed subseasonal variability of oceanic barrier and compensated layers. J Clim 22:6104–6119CrossRefGoogle Scholar
  21. Lukas R, Lindstrom E (1991) The mixed layer of the western equatorial Pacific Ocean. J Geophys Res 96:3343–3357CrossRefGoogle Scholar
  22. Maes C, Picaut J, Belamari S (2002) Salinity barrier layer and onset of El Niño in a Pacific coupled model. Geophys Res Lett. doi:10.1029/2002GL016029 Google Scholar
  23. Maes C, Picaut J, Belamari S (2005) Importance of salinity barrier layer for the buildup of El Niño. J Clim 18:104–118CrossRefGoogle Scholar
  24. Maes C, Ando K, Delcroix T, Kessler WS, McPhaden MJ, Roemmich D (2006) Observed correlation of surface salinity, temperature and barrier layer at the eastern edge of the western Pacific warm pool. Geophys Res Lett 33:L06601. doi:10.1029/2005GL024772 CrossRefGoogle Scholar
  25. Mignot J, de Boyer Montégut C, Lazar A, Cravatte S (2007) Control of salinity on the mixed layer depth in theworld ocean: 2. Tropical areas. J Geophys Res 112:C10010. doi:10.1029/2006JC003954 CrossRefGoogle Scholar
  26. Qu T, Gao S, Fine R (2013) Subduction of South Pacific tropical water and its equatorward pathways as shown by a simulated passive tracer. J Phys Oceanogr 43(8):1551–1565. doi:10.1175/JPO-D-12-0180.1 CrossRefGoogle Scholar
  27. Qu T, Song TY, Maes C (2014) Sea surface salinity and barrier layer variability in the equatorial Pacific as seen from Aquarius and Argo. J Geophys Res Oceans 119:15–29. doi:10.1002/2013JC009375 CrossRefGoogle Scholar
  28. Ren HL, Jin FF (2011) Niño indices for two types of ENSO. Geophys Res Lett 38:L04704. doi:10.1029/2010GL046031 CrossRefGoogle Scholar
  29. Ren HL, Jin FF (2013) Recharge oscillator mechanisms in two types of ENSO. J Clim 26:6506–6523CrossRefGoogle Scholar
  30. Sato K, Suga T, Hanawa K (2004) Barrier layer in the North Pacific subtropical gyre. Geophys Res Lett 31:L05301. doi:10.1029/2003GL018590 Google Scholar
  31. Smith TM, Reynolds RW, Peterson TC, Lawrimore J (2008) Improvements to NOAA’s historical merged land-ocean surface temperature analysis (1880–2006). J Clim 21:2283–2296CrossRefGoogle Scholar
  32. Sprintall J, Tomczak M (1992) Evidence of the barrier layer in the surface layer of the tropics. J Geophys Res 97:7305–7316CrossRefGoogle Scholar
  33. Suarez MJ, Schopf PS (1988) A delayed action oscillator for ENSO. J Atmos Sci 45:3283–3287CrossRefGoogle Scholar
  34. Vialard J, Delecluse P (1998a) An OGCM study for the TOGA decade. Part I: role of salinity in the physics of the western Pacific fresh pool. J Phys Oceanogr 28:1071–1088CrossRefGoogle Scholar
  35. Vialard J, Delecluse P (1998b) An OGCM study for the TOGA decade. Part II: barrier-layer formation and variability. J Phys Oceanogr 28:1089–1105CrossRefGoogle Scholar
  36. Wang CZ, Wang X (2013) Classifying El Niño Modoki I and II by different impacts on rainfall in Southern China and typhoon tracks. J Clim 26(4):1322–1338CrossRefGoogle Scholar
  37. Wang X, Han G, Qi Y, Li W (2011) Impact of barrier layer on typhoon-induced sea surface cooling. Dyn Atmos Oceans 52:367–385CrossRefGoogle Scholar
  38. Wang X, Zhou W, Li C, Wang D (2014) Comparison of the impact of two types of El Niño on tropical cyclone genesis over the South China Sea. Int J Climatol 34:2651–2660CrossRefGoogle Scholar
  39. Yeh SW, Kug JS, Dewitte B, Kwon MH, Kirtman BP, Jin FF (2009) El Niño in a changing climate. Nature 461:511–514CrossRefGoogle Scholar
  40. Yeh S-W, Kug J-S, An S-I (2014) Recent progress on two types of El Niño: observations, dynamics, and future changes. Asia Pac J Atmos Sci 50(1):69–81CrossRefGoogle Scholar
  41. Yu J-Y, Kim ST (2010) Three evolution patterns of Central-Pacific El Niño. Geophys Res Lett. doi:10.1029/2010GL042810 Google Scholar
  42. Zheng F, Zhang RH, Zhu J (2014) Effects of interannual salinity variability on the barrier layer in the western-central equatorial Pacific: a diagnostic analysis from Argo. Adv Atmos Sci 31:532–542CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  1. 1.Key Laboratory of Marine Environmental Information Technology, SOANational Marine Data and Information ServiceTianjinChina
  2. 2.Institute of OceanographyShanghai Jiaotong UniversityShanghaiChina

Personalised recommendations