Climate Dynamics

, Volume 46, Issue 11–12, pp 4027–4045 | Cite as

Extreme air–sea interaction over the North Atlantic subpolar gyre during the winter of 2013–2014 and its sub-surface legacy

  • Jeremy P. Grist
  • Simon A. Josey
  • Zoe L. Jacobs
  • Robert Marsh
  • Bablu Sinha
  • Erik Van Sebille
Article

Abstract

Exceptionally low North American temperatures and record-breaking precipitation over the British Isles during winter 2013–2014 were interconnected by anomalous ocean evaporation over the North Atlantic subpolar gyre region (SPG). This evaporation (or oceanic latent heat release) was accompanied by strong sensible heat loss to the atmosphere. The enhanced heat loss over the SPG was caused by a combination of surface westerly winds from the North American continent and northerly winds from the Nordic Seas region that were colder, drier and stronger than normal. A distinctive feature of the air–sea exchange was that the enhanced heat loss spanned the entire width of the SPG, with evaporation anomalies intensifying in the east while sensible heat flux anomalies were slightly stronger upstream in the west. The immediate impact of the strong air–sea fluxes on the ocean–atmosphere system included a reduction in ocean heat content of the SPG and a shift in basin-scale pathways of ocean heat and atmospheric freshwater transport. Atmospheric reanalysis data and the EN4 ocean data set indicate that a longer-term legacy of the winter has been the enhanced formation of a particularly dense mode of Subpolar Mode Water (SPMW)—one of the precursors of North Atlantic Deep Water and thus an important component of the Atlantic Meridional Overturning Circulation. Using particle trajectory analysis, the likely dispersal of newly-formed SPMW is evaluated, providing evidence for the re-emergence of anomalously cold SPMW in early winter 2014/2015.

Keywords

North Atlantic Ocean Air–sea fluxes Ocean heat content Subpolar Mode Water Winter 2013–2014 

Notes

Acknowledgments

J. P. G, S. A. J. and B. S were supported by Natural Environment Research Council National Capability funding. R.M. acknowledges the support of a Faculty of Science Research Fellowship awarded by the University of New South Wales, and the support of a 2013 Research Bursary awarded by the Scottish Association for Marine Science. E.V.S. was supported by the Australian Research Council via Grant DE130101336. Z.J. is supported by a studentship from the Graduate School of the National Oceanography Centre Southampton.

References

  1. Ballinger TM, Allen MJ, Rohli RV (2014) Spatiotemporal analysis of the January Northern Hemisphere circumpolar vortex over the contiguous United States. Geophys Res Lett 41:3602–3608. doi:10.1002/2014GL060285 CrossRefGoogle Scholar
  2. Barnier B, Madec G, Penduff T, Molines J-M, Treguier A-M, Le Sommer J, Beckmann A, Biastoch A, Böning C, Dengg J, Derval C, Durand E, Gulev S, Remy E, Talandier C, Theetten S, Maltrud M, McClean J, De Cuevas B (2006) Impact of partial steps and momentum advection schemes in a global ocean circulation model at eddy permitting resolution. Ocean Dyn 56:543–567. doi:10.1007/s10236-006-0082-1 CrossRefGoogle Scholar
  3. Blanke B, Raynaud S (1997) Kinematics of the Pacific Equatorial Undercurrent: a Eulerian and Lagrangian approach from GCM results. J Phys Oceanogr 27:1038–1053CrossRefGoogle Scholar
  4. de Boisséson E, Thierry V, Mercier H, Caniaux G (2012) Origin, formation and variability of the subpolar mode water observed over the Reykjanes Ridge. J Geophys Res (Oceans) 117:C12005. doi:10.1029/2011JC007519 CrossRefGoogle Scholar
  5. Dee DP et al (2011) The ERA-Interim reanalysis: configuration and performance of the data assimilation system. Q J R Meteorol Soc 137:553–597. doi:10.1002/qj.828 CrossRefGoogle Scholar
  6. DRAKKAR Group (2007) Eddy-permitting ocean circulation hindcasts of past decades. CLIVAR Exch 42, 12(3):8–10Google Scholar
  7. Duchez A, Frajka-Williams E, Castro N, Hirschi J, Coward A (2014) Seasonal to interannual variability in density around the Canary Islands and their influence on the Atlantic meridional overturning circulation at 26 N. J Geophys Res Oceans 119:1843–1860. doi:10.1002/2013JC009416 CrossRefGoogle Scholar
  8. Good SA, Martin MJ, Rayner NA (2013) EN4: quality controlled ocean temperature and salinity profiles and monthly objective analyses with uncertainty estimates. J Geophys Res 118:6704–6716. doi:10.1002/2013JC009067 CrossRefGoogle Scholar
  9. Grist JP, Marsh R, Josey SA (2009) On the relationship between the North Atlantic meridional overturning circulation and the surface-forced overturning stream function. J Clim 22:4989–5002. doi:10.1175/2009JCLI2574.1 CrossRefGoogle Scholar
  10. Grist JP, Josey SA, Marsh R, Good SA, Coward AC, de Cuevas BA, Alderson SG, New AL, Madec G (2010) The roles of surface heat flux and ocean heat transport convergence in determining Atlantic Ocean temperature variability. Ocean Dyn 60:771–790. doi:10.1007/s10236-010-0292-4 CrossRefGoogle Scholar
  11. Grist JP, Josey SA, Boehme L, Meredith MP, Laidre KL, Heide- Jørgensen MP, Kovacs KM, Lydersen C, Davidson FJM, Stenson GB, Hammil MO, Marsh R, Coward AC (2014) Seasonal variability of the warm Atlantic Water layer in the vicinity of the Greenland shelf break. Geophys Res Lett 41:8530–8537. doi:10.1002/2014GL062051 CrossRefGoogle Scholar
  12. Hanawa K, Sugimoto S (2004) Re-emergence areas of winter sea surface temperature anomalies in the world’s oceans. Geophys Res Lett. doi:10.1029/2004GL019904 Google Scholar
  13. Hátún H, Sandø AB, Drange H, Hansen B, Valdimarsson H (2005) Influence of the Atlantic subpolar gyre on the thermohaline circulation. Science 309:1841–1844. doi:10.1126/science.1114777 CrossRefGoogle Scholar
  14. Huntingford C, Marsh T, Scaife AA, Kendon EJ, Hannaford J, Kay AL, Lockwood M, Prudhomme Reynard NS, Parry S, Lowe JA, Screen JA, Ward HC, Roberts M, Stott PA, Bell VA, Bailey M, Jenkins A, Legg T, Otto FEL, Massey MN, Schaller N, Slingo J, Allen MR (2014) Potential influences on the United Kingdom’s floods of winter 2013/14. Nat Clim Change 4:769–777. doi:10.1038/nclimate2314 CrossRefGoogle Scholar
  15. Josey SA, Gulev S, Yu L (2013) Exchanges through the ocean surface. In: Siedler G, Griffies S, Gould J, Church J (eds) Ocean circulation and climate, 2nd ed, vol 103. A 21st century perspective, International Geophysics Series. Academic Press, San Diego, pp 115–140Google Scholar
  16. Kalnay E, Kanamitsu M, Kistler R, Collins W, Deaven D, Gandin L, Iredell M, Saha S, White G, Woollen J, Zhu Y, Leetmaa A, Reynolds R, Chelliah M, Ebisuzaki W, Higgins W, Janowiak J, Mo KC, Ropelewski C, Wang J, Jenne R, Joseph D (1996) The NCEP/NCAR 40-year reanalysis project. Bull Amer Meteor Soc 77:437–471CrossRefGoogle Scholar
  17. Langehaug HR, Rhines PB, Eldevik T, Mignot J, Lohmann K (2012) Water-mass transformation and the North Atlantic Current in three multi-century climate model simulations. J Geophys Res. doi:10.1029/2012JC00802 Google Scholar
  18. Lavers DA, Villarini G, Allan RP, Wood EF, Wade AJ (2012) The detection of atmospheric rivers in atmospheric reanalysis and their links to British winter floods and the large-scale climatic circulation. J Geophys Res 117:D20106. doi:10.1029/2012JD018027 CrossRefGoogle Scholar
  19. Madec, G (2008) NEMO Ocean Engine, Note du pôle modélisation 27, Institut Pierre-Simon Laplace (IPSL)Google Scholar
  20. Marsh R (2000) Recent variability of the North Atlantic thermohaline circulation inferred from surface heat and freshwater fluxes. J Clim 13:3239–3260CrossRefGoogle Scholar
  21. Marsh R, Josey SA, de Cuevas BA, Redbourn LJ, Quartly QD (2008) Mechanisms for recent warming of the North Atlantic: insights gained with an eddy-permitting model. J Geophys Res 113:C04031. doi:10.1029/2007JC004096 CrossRefGoogle Scholar
  22. Masumoto Y, Sasaki H, Kagimoto T, Komori N, Ishida A, Sasai Y, Miyama T, Motoi T, Mitsudera H, Takahashi K, Sakuma H, Yamagata T (2004) A fifty-year eddy-resolving simulation of the world ocean: preliminary outcomes of OFES (OGCM for the Earth simulator). J Earth Simul 1:35–56Google Scholar
  23. Mathews T, Murphy C, Wilby RL, Harrigen S (2014) Stormiest winter on record for Ireland and UK. Nat Clim Change 4:738–740. doi:10.1038/nclimate2336 CrossRefGoogle Scholar
  24. Palmer T (2014) Record-breaking winters and global climate change. Science 344:803–804. doi:10.1126/science.1255147 CrossRefGoogle Scholar
  25. Paris CB, Helgers J, Van Sebille E, Srinivasan A (2013) Connectivity modeling system: A probabilistic modeling tool for the multi-scale tracking of biotic and abiotic variability in the ocean. Environ Model Softw 42:47–54. doi:10.1016/j.envsoft.2012.12.006 CrossRefGoogle Scholar
  26. Screen JA, Deser C, Sun L (2015) Reduced risk of North American cold extremes due to continued Arctic sea-ice loss. Bull Am Meteorol Soc. doi:10.1175/BAMS-D-14-00185.1 Google Scholar
  27. Slingo J, Belcher S, Scaife A, McCarthy M, Saulter A, McBeath K, Jenkins A, Huntingford C, Marsh T, Hannaford J, Parry S (2014) The Recent Storms And Floods In The UK. Exeter, UK Met Office. http://nora.nerc.ac.uk/505192/
  28. Speer K, Tziperman E (1992) Rates of water mass formation in the North Atlantic Ocean. J Phys Oceanogr 22:93–104CrossRefGoogle Scholar
  29. Sugimoto S, Hanawa K (2005) Remote re-emergence areas of winter sea surface temperature anomalies in the Norty Pacific. Geophys Res Lett. doi:10.1029/2004GL021410 Google Scholar
  30. Taws SL, Marsh R, Wells NC, Hirschi J (2011) Re-emerging ocean temperature anomalies in late-2010 associated with a repeat negative NAO. Geophys Res Lett 38(20):L20601. doi:10.1029/2011GL048978 CrossRefGoogle Scholar
  31. van Oldenborgh GJ, Haarsma R, De Vries H, Allen MR (2015) Cold extremes in North America vs. mild weather in Europe: the winter of 2013–14 in the context of a warming world. Bull Am Meteorol Soc 96:707–714. doi:10.1175/BAMS-D-14-00036.1 CrossRefGoogle Scholar
  32. Walin G (1982) On the relation between sea-surface heat flow and thermal circulation in the ocean. Tellus 34:187–195CrossRefGoogle Scholar
  33. Yu L, Weller RA (2007) Objectively analyzed air–sea heat fluxes for the global ice-free oceans (1981–2005). Bull Am Meteorol Soc 88:527–539CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • Jeremy P. Grist
    • 1
  • Simon A. Josey
    • 1
  • Zoe L. Jacobs
    • 2
  • Robert Marsh
    • 2
  • Bablu Sinha
    • 1
  • Erik Van Sebille
    • 3
    • 4
  1. 1.National Oceanography CentreUniversity of Southampton Waterfront CampusSouthamptonUK
  2. 2.Ocean and Earth Science, National Oceanography Centre SouthamptonUniversity of SouthamptonSouthamptonUK
  3. 3.Climate Change Research Centre and ARC Centre of Excellence for Climate System ScienceUniversity of New South WalesSydneyAustralia
  4. 4.Grantham Institute and Department of PhysicsImperial College LondonLondonUK

Personalised recommendations