Advertisement

Climate Dynamics

, Volume 46, Issue 11–12, pp 3941–3963 | Cite as

Influence of South America orography on summertime precipitation in Southeastern South America

  • C. Junquas
  • L. Li
  • C. S. Vera
  • H. Le Treut
  • K. Takahashi
Article

Abstract

Impacts of the main South American orographic structures (the Andes, the Brazilian Plateau and the Guiana shield) on the regional climate and associated global teleconnection are investigated through numerical experiments in which some of these features are suppressed. Simulations are performed with a ‘‘two-way nesting’’ system coupling interactively the regional and global versions of the LMDZ4 atmospheric general circulation model. At regional scale, the simulations confirm previous studies, showing that both the Andes and the Brazilian Plateau exert a control on the position and strength of the South Atlantic convergence zone (SACZ), mainly through their impact on the low-level jet and the coastal branch of the subtropical anticyclones. The northern topography of South America appears to be crucial to determine the leading mode of rainfall variability in eastern South America, which manifests itself as a dipole-like pattern between Southeastern South America and the SACZ region. The suppression of South America orography also shows global-scale effects, corresponding to an adjustment of the global circulation system. Changes in atmospheric circulation and precipitation are found in remote areas on the globe, being the consequences of various teleconnection mechanisms. When the Brazilian Plateau and the Andes are suppressed, there is a decrease of precipitation in the SACZ region, associated with a weakening of the large-scale ascendance. Changes are described in terms of anomalies in the Walker circulation, meridional displacements of the mid-latitude jet stream, Southern annular mode anomalies and modifications of Rossby wave train teleconnection processes.

Keywords

South America orography Summer precipitation Orography influence Two-way nesting system Global teleconnection processes 

Notes

Acknowledgments

Comments and suggestions provided by three anonymous reviewers were very helpful in improving this paper. This research was supported by the European Commission’s Seventh Framework Programme (FP7/2007–2013) under Grant Agreement No 212492 (CLARIS LPB. A Europe-South America Network for Climate Change Assessment and Impact Studies in La Plata Basin), ECOS-MINCyT (project No A12U02 DIAGAC), CNRS/LEFE Program, and CONICET PIP 112-200801-00399. The first author C.J. was supported by a Ph.D grant from the Ecole Polytechnique, and post-doc grants from the Institute of Research for the Development (IRD), the French National Center for Scientific Research (CNRS), and the Ecole Polytechnique. We especially thank François Lott, Frédéric Hourdin and our other colleagues from the LMD (Laboratoire de Météorologie Dynamique) for the productive discussions about the experiments.

References

  1. Berbery E, Barros V (2002) The hydrologic cycle of the la plata basin in South America. J Hydrometeorol 3(6):630–645CrossRefGoogle Scholar
  2. Berbery EH, Nogués-Paegle J, Horel JD (1992) Wavelike southern hemisphere extratropical teleconnections. J Atmos Sci 49(2):155–177CrossRefGoogle Scholar
  3. Braconnot P, Hourdin F, Bony S, Dufresne JL, Grandpeix JY, Marti O (2007) Impact of different convective cloud schemes on the simulation of the tropical seasonal cycle in a coupled ocean–atmosphere model. Clim Dyn 29(5):501–520CrossRefGoogle Scholar
  4. Bretherton CS (1993) Understanding Albrecht’s model of tradecumulus cloud fields. J Atmos Sci 50:2264–2283CrossRefGoogle Scholar
  5. Campetella CM, Vera CS (2002) The influence of the Andes Mountains on the South American low-level flow. Geophys Res Lett 29(17):1826. doi: 10.1029/2002GL015451 CrossRefGoogle Scholar
  6. Carvalho LM, Jones C, Liebmann B (2002) Extreme precipitation events in southeastern South America and large-scale convective patterns in the South Atlantic convergence zone. J Clim 15(17):2377–2394CrossRefGoogle Scholar
  7. Carvalho LM, Jones C, Liebmann B (2004) The South Atlantic convergence zone: intensity, form, persistence, and relationships with intraseasonal to interannual activity and extreme rainfall. J Clim 17(1):88–108CrossRefGoogle Scholar
  8. Carvalho LM, Jones C, Posadas AN, Quiroz R, Bookhagen B, Liebmann B (2012) Precipitation characteristics of the South American monsoon system derived from multiple datasets. J Clim 25(13):4600–4620CrossRefGoogle Scholar
  9. Chen G, Held IM (2007) Phase speed spectra and the recent poleward shift of Southern Hemisphere surface westerlies. Geophys Res Lett 34(21). doi: 10.1029/2007GL031200
  10. Chen T, Weng S, Schubert S (1999) Maintenance of austral summertime upper-tropospheric circulation over tropical south America: the bolivian high-nordeste low system. J Atmos Sci 56:2081–2100CrossRefGoogle Scholar
  11. Chen W, Jiang Z, Li L, Yiou P (2011) Simulation of regional climate change under the IPCC A2 scenario in southeast China. Clim Dyn 36:491–507CrossRefGoogle Scholar
  12. Chou C, Neelin JD (2001) Mechanisms limiting the southward extent of the South American summer monsoon. Geophys Res Let 28(12):2433–2436CrossRefGoogle Scholar
  13. Codron F (2005) Relation between annular modes and the mean state: Southern Hemisphere summer. J Clim 18:320–330CrossRefGoogle Scholar
  14. Codron F, Sadourny R (2002) Saturation limiters for water vapour advection schemes: impact on orographic precipitation. Tellus A 54:338–349CrossRefGoogle Scholar
  15. Davis N, Bowden J, Semazzi F, Xie L, Önol B (2009) Customization of RegCM3 regional climate model for eastern Africa and a tropical Indian Ocean domain. J Clim 22(13):3595–3616CrossRefGoogle Scholar
  16. Ding Q, Steig EJ, Battisti DS, Wallace JM (2012) Influence of the Tropics on the Southern Annular Mode. J Clim 25(18):6330–6348CrossRefGoogle Scholar
  17. Ding H, Greatbatch RJ, Gollan G (2014) Tropical influence independent of ENSO on the austral summer Southern Annular Mode. Geophys Res Lett 41:3643–3648CrossRefGoogle Scholar
  18. Doyle M, Barros V (2002) Midsummer low-level circulation and precipitation in subtropical South America and related sea surface temperature anomalies in the South Atlantic. J Clim 15:3394–3410CrossRefGoogle Scholar
  19. Duan AM, Wu GX (2005) Role of the Tibetan Plateau thermal forcing in the summer climate patterns over subtropical Asia. Clim Dyn 24(7–8):793–807CrossRefGoogle Scholar
  20. Emanuel KA (1991) A scheme for representing cumulus convection in large-scale models. J Atmos Sci 48:2313–2335CrossRefGoogle Scholar
  21. Figueroa S, Satyamurty P, Da Silva DiasPL (1995) Simulations of the summer circulation over the south american region with an eta coordinate model. J Atmos Sci 52(10):1573–1584CrossRefGoogle Scholar
  22. Fu Q, Johanson CM, Wallace JM, Reichler T (2006) Enhanced mid-latitude tropospheric warming in satellite measurements. Science 312:1179CrossRefGoogle Scholar
  23. Gandu AW, Geisler JE (1991) A primitive equations model study of the effect of topography on the summer circulation over tropical South America. J Atmos Sci 48:1822–1836CrossRefGoogle Scholar
  24. Garreaud RD, Rutllant J, Quintana J, Carrasco J, Minnis P (2001) CIMAR-5: a snapshot of the lower troposphere over the subtropical Southeast Pacific. Bull Am Meteorol Soc 82:2193–2208CrossRefGoogle Scholar
  25. Gates WL (1992) AMIP: the atmospheric model intercomparison project. Bull Am Meteorol Soc 73:1962–1970CrossRefGoogle Scholar
  26. Gill A (1980) Some simple solutions for heat-induced tropical circulation. Q J R Meteorol Soc 106(449):447–462CrossRefGoogle Scholar
  27. Grimm A, Barros V, Doyle M (2000) Climate variability in southern south america associated with el niño and la niña events. J Clim 13:35–58CrossRefGoogle Scholar
  28. Grimm A, Pal J, Giorgi F (2007) Connection between spring conditions and peak summer monsoon rainfall in South America: role of soil moisture, surface temperature, and topography in eastern brazil. J Clim 20(24):5929–5945CrossRefGoogle Scholar
  29. Hahn DG, Manabe S (1975) The role of mountains in the south Asian monsoon circulation. J Atmos Sci 32:1515–1541CrossRefGoogle Scholar
  30. Hoskins BJ, Ambrizzi T (1993) Rossby wave propagation on a realistic longitudinally varying flow. J Atmos Sci 50(12):1661–1671CrossRefGoogle Scholar
  31. Hourdin F, Musat I, Bony S, Braconnot P, Codron F, Dufresne J, Fairhead L, Filiberti M, Friedlingstein P, Grandpeix J (2006) The lmdz4 general circulation model: climate performance and sensitivity to parametrized physics with emphasis on tropical convection. Clim Dyn 27(7):787–813CrossRefGoogle Scholar
  32. Huffman GJ, Adler RF, Bolvin DT, Gu G, Nelkin EJ, Bowman KP, Hong Y, Stocker EF, Wolff DB (2007) The TRMM Multisatellite Precipitation Analysis (TMPA): quasi-global, multiyear, combined-sensor precipitation estimates at fine scales. J Hydrometeorol 8:38–55. doi: 10.1175/JHM560.1 CrossRefGoogle Scholar
  33. Huffman GJ, Bolvin DT, Adler RF (2011) GPCP version 2.2 combined precipitation data set. WDC-A, NCDC, Asheville, NC. Data set accessed at http://www.ncdc.noaa.gov/oa/wmo/wdcamet-ncdc.html
  34. Insel N, Poulsen CJ, Ehlers TA (2010) Influence of the andes mountains on South American moisture transport, convection, and precipitation. Clim Dyn 35:1477–1492CrossRefGoogle Scholar
  35. James I N (1995) Introduction to circulating atmospheres. Cambridge University Press, CambridgeGoogle Scholar
  36. Junquas C, Vera C, Li L, Le Treut H (2012) Summer precipitation variability over southeastern South America in a global warming scenario. Clim Dyn 38:1867–1883CrossRefGoogle Scholar
  37. Junquas C, Vera CS, Li L, Le Treut H (2013) Impact of projected SST changes on summer rainfall in southeastern South America. Clim Dyn 40:1569–1589CrossRefGoogle Scholar
  38. Kalnay E, Kanamitsu M, Kistler R, Collins W, Deaven D, Gandin L, Joseph D (1996) The NCEP/NCAR 40-year reanalysis project. Bull Am Meteorol Soc 77(3):437–471CrossRefGoogle Scholar
  39. Karoly D (1989) Southern hemisphere circulation features associated with el niño southern oscillation events. J Clim 2:1239–1252CrossRefGoogle Scholar
  40. Kidson JW (1999) Principal modes of Southern Hemisphere low-frequency variability obtained from NCEP-NCAR reanalyses. J Clim 12(9):2808–2830CrossRefGoogle Scholar
  41. Kodama Y (1992) Large-scale common features of subtropical precipitation zones (the baiu frontal zone, the spcz, and the sacz). I: characteristics of subtropical frontal zones. J Meteorol Soc Jpn 70:813–836Google Scholar
  42. Kodama YM, Sagawa T, Ishida S, Yoshikane T (2012) Roles of the Brazilian Plateau in the formation of the SACZ. J Clim 25:1745–1758CrossRefGoogle Scholar
  43. Kummerow C, Simpson J, Thiele O, Barnes W, Chang ATC, Stocker E, Nakamura K (2000) The status of the tropical rainfall measuring mission (TRMM) after two years in orbit. J Appl Meteorol 39:1965–1982CrossRefGoogle Scholar
  44. Li Z (1999) Ensemble atmospheric GCM simulation of climate interannual variability from 1979 to 1994. J Clim 12:986–1001CrossRefGoogle Scholar
  45. Liebmann B, Kiladis GN, Marengo J, Ambrizzi T, Glick JD (1999) Submonthly convective variability over South America and the South Atlantic convergence zone. J Clim 12(7):1877–1891CrossRefGoogle Scholar
  46. Lorenz DJ, Hartmann DL (2001) Eddy-zonal flow feedback in the Southern Hemisphere. J Atmos Sci 58:3312–3327CrossRefGoogle Scholar
  47. Lorenz P, Jacob D (2005) Influence of regional scale information on the global circulation: a two-way nesting climate simulation. Geophys Res Lett 32:L18706. doi: 10.1029/2005GL023351 Google Scholar
  48. Marshall GJ (2003) Trends in the southern annular mode from observations and reanalyses. J Clim 16:4134–4143CrossRefGoogle Scholar
  49. Marti O et al (2005) The new IPSL climate system model: IPSL-CM4. Note du Pôle de Modélisation No. 26. Institut Pierre Simon Laplace des Sciences de l’Environnement Global, Paris. http://dods.ipsl.jussieu.fr/omamce/IPSLCM4/DocIPSLCM4/FILES/DocIPSLCM4.pdf
  50. Mesinger F, Janjic ZI, Nickovic S, Gavrilov D, Deaven DG (1988) The step-mountain coordinate: model description and performance for cases of Alpine lee cyclogenesis and for a case of an Appalachian redevelopment. Mon Weather Rev 116:1493–1518CrossRefGoogle Scholar
  51. Mitchell TP, Wallace JM (1992) The annual cycle in equatorial convection and sea surface temperature. J Clim 5:1140–1156CrossRefGoogle Scholar
  52. Mo K (2000) Relationships between low-frequency variability in the southern hemisphere and sea surface temperature anomalies. J Clim 13:3599–3610CrossRefGoogle Scholar
  53. NOAA National Geophysical Data Center (2001) 2-Minute gridded global relief data (ETOPO2), World Data Cent for Mar Geol and Geophys, Boulder, Colo. http://www.ngdc.noaa.gov/mgg/fliers/01mgg04.html
  54. Nogués-Paegle J, Mo K (1997) Alternating wet and dry conditions over south america during summer. Mon Weather Rev 125:279–291CrossRefGoogle Scholar
  55. Pesquero JF, Chou SC, Nobre CA, Marengo JA (2010) Climate downscaling over South America for 1961–1970 using the Eta Model. Theor Appl Climatol 99(1–2):75–93CrossRefGoogle Scholar
  56. Robertson A, Mechoso C (2000) Interannual and interdecadal variability of the South Atlantic convergence zone. Mon Weather Rev 128:2947–2957CrossRefGoogle Scholar
  57. Rodwell M, Hoskins B (2001) Subtropical anticyclones and summer monsoons. J Clim 14:3192–3211CrossRefGoogle Scholar
  58. Rozante JR, Moreira DS, de Goncalves LGG, Vila DA (2010) Combining TRMM and surface observations of precipitation: technique and validation over South America. Weather Forecast 25(3):885–894CrossRefGoogle Scholar
  59. Saurral RI, Camilloni IA, Ambrizzi T (2014) Links between topography, moisture fluxes pathways and precipitation over South America. Clim Dyn. doi: 10.1007/s00382-014-2309-z Google Scholar
  60. Silva G, Ambrizzi T, Marengo J (2009) Observational evidences on the modulation of the south american low level jet east of the andes according the enso variability. Ann Geophys 27:645–657. (Copernicus) Google Scholar
  61. Simmons AJ, Burridge DM (1981) An energy and angular-momentum conserving vertical finite-difference scheme and hybrid vertical coordinates. Mon Weather Rev 109(4):758–766CrossRefGoogle Scholar
  62. Takahashi K, Battisti DS (2007a) Processes controlling the mean tropical Pacific precipitation pattern. Part I: the Andes and the eastern Pacific ITCZ. J Clim 20:3434–3451CrossRefGoogle Scholar
  63. Takahashi K, Battisti DS (2007b) Processes controlling the mean tropical Pacific precipitation pattern. Part II: the SPCZ and the southeast Pacific dry zone. J Clim 20(23):5696–5706CrossRefGoogle Scholar
  64. Tanaka H, Ishizaki N, Kitoh A (2004) Trend and interannual variability of walker, monsoon and hadley circulations defined by velocity potential in the upper troposphere. Tellus A 56:250–269CrossRefGoogle Scholar
  65. Thompson DWJ, Solomon S (2002) Interpretation of recent Southern Hemisphere climate change. Science 296:895–899CrossRefGoogle Scholar
  66. Thompson DW, Wallace JM, Hegerl GC (2000) Annular modes in the extratropical circulation. Part II: trends. J Clim 13:1018–1036CrossRefGoogle Scholar
  67. Thompson DWJ, Baldwin MP, Solomon S (2005) Stratosphere-troposphere coupling in the Southern Hemisphere. J Atmos Sci 62:708–715CrossRefGoogle Scholar
  68. Vera C, Silvestri G, Barros V, Carril A (2004) Differences in el nino response over the southern hemisphere. J Clim 17:1741–1753CrossRefGoogle Scholar
  69. Vera C, Baez J, Douglas M, Emmanuel CB, Marengo J, Meitin J, Nicolini M, Nogues-Paegle J, Paegle J, Penalba O, Salio P, Saulo C, Silva-Dias PL, Zipser E (2006) The South American lowlevel jet experiment. Bull Am Meteorol Soc 87:63–77CrossRefGoogle Scholar
  70. Wu G, Liu Y, He B, Bao Q, Duan A, Jin FF (2012) Thermal controls on the Asian summer monsoon. Sci Rep 2. doi: 10.1038/srep00404
  71. Wyant MC, Bretherton CS, Rand HA, Stevens DE (1997) Numerical simulations and a conceptual model of the subtropical marine stratocumulus to trade cumulus transition. J Atmos Sci 54:168–192CrossRefGoogle Scholar
  72. Xie P, Arkin P (1997) Global precipitation : a 17-year monthly analysis based on gauge observations, satellite estimates, and numerical model outputs. Bull Am Meteorol Soc 78:2539–2558CrossRefGoogle Scholar
  73. Xu H, Wang Y, Xie SP (2004) Effects of the Andes on Eastern Pacific climate: a Regional Atmospheric Model Study. J Clim 17(3):589–602CrossRefGoogle Scholar
  74. Yuter SE, Serra Y, Houze RA Jr (2000) The 1997 Pan American climate studies tropical eastern Pacific process study. Part II: stratocumulus region. Bull Am Meteorol Soc 81:483–490CrossRefGoogle Scholar
  75. Zhu Z (1997) Precipitation and water vapor transport simulated by a hybrid σ–θ Coordinate GCM. J Clim 10:988–1003CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • C. Junquas
    • 1
    • 2
  • L. Li
    • 3
  • C. S. Vera
    • 4
  • H. Le Treut
    • 3
  • K. Takahashi
    • 1
  1. 1.Instituto Geofísico del Perú (IGP)LimaPeru
  2. 2.IRD/UJF-Grenoble 1/CNRS/G-INPLTHE UMRGrenobleFrance
  3. 3.Laboratoire de Météorologie Dynamique, Institut Pierre Simon LaplaceUPMC/CNRSParisFrance
  4. 4.Centro de Investigaciones del Mar y la Atmosfera (CIMA/CONICET-UBA)DCAO/FCEN, UMI IFAECI/CNRSBuenos AiresArgentina

Personalised recommendations