Climate Dynamics

, Volume 49, Issue 3, pp 931–956 | Cite as

Global coupled sea ice-ocean state estimation

  • Ian Fenty
  • Dimitris Menemenlis
  • Hong Zhang


We study the impact of synthesizing ocean and sea ice concentration data with a global, eddying coupled sea ice-ocean configuration of the Massachusetts Institute of Technology general circulation model with the goal of reproducing the 2004 three-dimensional time-evolving ice-ocean state. This work builds on the state estimation framework developed in the Estimating the Circulation and Climate of the Ocean consortium by seeking a reconstruction of the global sea ice-ocean system that is simultaneously consistent with (1) a suite of in situ and remotely-sensed ocean and ice data and (2) the physics encoded in the numerical model. This dual consistency is successfully achieved here by adjusting only the model’s initial hydrographic state and its atmospheric boundary conditions such that misfits between the model and data are minimized in a least-squares sense. We show that synthesizing both ocean and sea ice concentration data is required for the model to adequately reproduce the observed details of the sea ice annual cycle in both hemispheres. Surprisingly, only modest adjustments to our first-guess atmospheric state and ocean initial conditions are necessary to achieve model-data consistency, suggesting that atmospheric reanalysis products remain a leading source of errors for sea ice-ocean model hindcasts and reanalyses. The synthesis of sea ice data is found to ameliorate misfits in the high latitude ocean, especially with respect to upper ocean stratification, temperature, and salinity. Constraining the model to sea ice concentration modestly reduces ICESat-derived Arctic ice thickness errors by improving the temporal and spatial evolution of seasonal ice. Further increases in the accuracy of global sea ice thickness in the model likely require the direct synthesis of sea ice thickness data.


Adjoint State estimation Sea ice ECCO2 Coupled ocean model Sea ice concentration data Assimilation 4DVAR 



The research was carried out at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with the National Aeronautics and Space Administration. Support was provided by an appointment to the NASA Postdoctoral Program which is administered by Oak Ridge Associated Universities through a contract with NASA; the NASA Cryosphere program; and the NASA Modeling, Analysis, and Prediction program. We thank our ECCO partners, the MITgcm development group, the various data centers and the helpful comments of our reviewers. Computations were carried out at NASA Advanced Supercomputing (NAS) facilities.

Supplementary material

382_2015_2796_MOESM1_ESM.pdf (3.6 mb)
Supplementary material 1 (pdf 3687 KB)


  1. Adcroft A, Campin JM, Hill C, Marshall J (2004) Implementation of an atmosphere-ocean general circulation model on the expanded spherical cube. Mon Weather Rev 132(12):2845–2863. doi: 10.1175/MWR2823.1 CrossRefGoogle Scholar
  2. Antonov JI, Seidov D, Boyer TP, Locarnini RA, Mishonov AV, Garcia HE, Baranova OK, Zweng MM, Johnson DR (2010) World Ocean Atlas 2009. In: Levitus S (ed) Salinity, NOAA Atlas NESDIS 69, vol 2. U.S. Government Printing Office, Washington, D.C., p 184Google Scholar
  3. Bertino L, Lisaæter K (2008) The TOPAZ monitoring and prediction system for the Atlantic and Arctic Oceans. J Oper Oceanogr 1(2):15–19. doi: 10.1080/1755876X.2008.11020098 CrossRefGoogle Scholar
  4. Bitz CM, Holland MM, Hunke EC, Moritz RE (2005) Maintenance of the sea-ice edge. J Clim 18(15):2903–2921. doi: 10.1175/JCLI3428.1 CrossRefGoogle Scholar
  5. Bitz CM, Gent PR, Woodgate RA, Holland MM, Lindsay R (2006) The influence of sea ice on ocean heat uptake in response to increasing \(\text{ CO }_2\). J Clim 19:2437–2450. doi: 10.1175/JCLI3756.1 CrossRefGoogle Scholar
  6. Boé J, Hall A, Qu X (2009) September sea-ice cover in the Arctic Ocean projected to vanish by 2100. Nat Geosci 2(5):341–343. doi: 10.1038/natg467 CrossRefGoogle Scholar
  7. Chaudhuri AH, Ponte RM, Nguyen AT (2014) A comparison of atmospheric reanalysis products for the Arctic Ocean and implications for uncertainties in air–sea fluxes. J Clim 27(14):5411–5421. doi: 10.1175/JCLI-D-13-00424.1 CrossRefGoogle Scholar
  8. Comiso J (2000, updated 2014) Bootstrap sea ice concentrations from Nimbus-7 SMMR and DMSP SSM/I-SSMIS. Version 2. [Daily Jan 1, 2004–Dec 31, 2004]. Digital media, NASA DAAC at the National Snow and Ice Data Center, Boulder, Colorado USAGoogle Scholar
  9. Condron A, Winsor P (2011) A subtropical fate awaited freshwater discharged from glacial Lake Agassiz. Geophys Res Lett 38(3):L03,705. doi: 10.1029/2010GL046011 CrossRefGoogle Scholar
  10. Condron A, Windsor P, Hill C, Menemenlis D (2009) Simulated response of the Arctic freshwater budget to extreme NAO wind forcing. J Clim 22(9):2422–2437. doi: 10.1175/2008JCLI2626.1 CrossRefGoogle Scholar
  11. de Lavergne C, Palter JB, Galbraith ED, Bernardello R, Marinov I (2014) Cessation of deep convection in the open Southern Ocean under anthropogenic climate change. Nat Clim Change 4(4):278–282. doi: 10.1038/NCLIMATE2132 CrossRefGoogle Scholar
  12. Duffy P, Eby M, Weaver AJ (1999) Effects of sinking of salt rejected during formation of sea ice on results of an ocean-atmosphere-sea ice climate model. Geophys Res Lett 26(12):1739–1742. doi: 10.1029/1999GL900286 CrossRefGoogle Scholar
  13. Fenty I, Heimbach P (2013a) Coupled sea ice–ocean state estimation in the Labrador Sea and Baffin Bay. J Phys Oceanogr 43:884–904. doi: 10.1175/JPO-D-12-065.1 CrossRefGoogle Scholar
  14. Fenty I, Heimbach P (2013b) Hydrographic preconditioning for seasonal sea ice anomalies in the Labrador Sea. J Phys Oceanogr 43:863–883. doi: 10.1175/JPO-D-12-064.1 CrossRefGoogle Scholar
  15. Forget G (2010) Mapping ocean observations in a dynamical framework: a 2004–06 ocean atlas. J Phys Oceanogr 40:1201–1221. doi: 10.1175/2009JPO4043.1 CrossRefGoogle Scholar
  16. Forget G, Wunsch C (2007) Estimated global hydrographic variability. J Phys Oceanogr 37:1997–2008. doi: 10.1175/JPO3072.1 CrossRefGoogle Scholar
  17. Forget G, Campin JM, Heimbach P, Hill CN, Ponte RM, Wunsch C (2015) ECCO version 4: an integrated framework for non-linear inverse modeling and global ocean state estimation. Geosci Model Dev Discuss 8:3653–3743. doi: 10.5194/gmdd-8-3653-2015 CrossRefGoogle Scholar
  18. Fukumori I, Wang O, Llovel W, Fenty I, Forget G (2015) A near-uniform fluctuation of ocean bottom pressure and sea level across the deep ocean basins of the Arctic Ocean and the Nordic Seas. Prog Oceanogr 134:152–172. doi: 10.1016/j.pocean.2015.01.013 CrossRefGoogle Scholar
  19. Giering R, Kaminski T, Slawig T (2005) Generating efficient derivative code with TAF: adjoint and tangent linear Euler flow around an airfoil. Future Gener Comput Syst 21(8):1345–1355. doi: 10.1016/j.future.2004.11.003 CrossRefGoogle Scholar
  20. Griffies SM, Biastoch A, Böning C, Bryan F, Danabasoglu G, Chassignet EP, England MH, Gerdes R, Haak H, Hallberg RW, Hazeleger W, Jungclaus J, Large WG, Madec G, Pirani A, Samuels BL, Scheinert M, Gupta AS, Severijns CA, Simmons HL, Treguier AM, Winton M, Yeager S, Yin J (2009) Coordinated ocean-ice reference experiments (COREs). Ocean Model 26(1–2):1–46. doi: 10.1016/j.ocemod.2008.08.007 CrossRefGoogle Scholar
  21. Heimbach P, Losch M (2012) Adjoint sensitivities of sub-ice shelf melt rates to ocean circulation under Pine Island Ice Shelf, West Antarctica. Ann Glaciol 53(60):59–69. doi: 10.3189/2012/AoG60A025 CrossRefGoogle Scholar
  22. Heimbach P, Menemenlis D, Losch M, Campin JM, Hill C (2010) On the formulation of sea-ice models. Part 2: lessons from multi-year adjoint sea ice export sensitivities through the Canadian Arctic Archipelago. Ocean Model 33(1–2):145–158. doi: 10.1016/j.ocemod.2010.02.002 CrossRefGoogle Scholar
  23. Hibler WD (1979) A dynamic thermodynamic sea ice model. J Phys Oceanogr 9(4):815–846. doi: 10.1175/1520-0485(1979)009<0815:ADTSIM>2.0.CO;2
  24. Hibler WD (1980) Modeling a variable thickness sea ice cover. Mon Weather Rev 108(12):1943–1973. doi: 10.1175/1520-0493(1980)108<1943:MAVTSI>2.0.CO;2
  25. Holland PR, Kwok R (2012) Wind-driven trends in Antarctic sea-ice drift. Nat Geosci 5(12):872–875. doi: 10.1038/natg1627 CrossRefGoogle Scholar
  26. Howat IM, Box JE, Ahn Y, Herrington A, McFadden EM (2010) Seasonal variability in the dynamics of marine-terminating outlet glaciers in Greenland. J Glaciol 56(198):601–613. doi: 10.3189/002214310793146232 CrossRefGoogle Scholar
  27. Isaac T, Petra N, Stadler G, Ghattas O (2015) Scalable and efficient algorithms for the propagation of uncertainty from data through inference to prediction for large-scale problems, with application to flow of the Antarctic ice sheet. J Comput Phys 296:348–368. doi: 10.1016/ CrossRefGoogle Scholar
  28. Jahn A, Holland MM (2013) Implications of Arctic sea ice changes for North Atlantic deep convection and the meridional overturning circulation in CCSM4-CMIP5 simulations. Geophys Res Lett 40(6):1206–1211. doi: 10.1002/grl.50183 CrossRefGoogle Scholar
  29. Jakobson E, Vihma T, Palo T, Jakobson L, Keernik H, Jaagus J (2012) Validation of atmospheric reanalyses over the central Arctic Ocean. Geophys Res Lett 39(10):L10,802. doi: 10.1029/2012GL051591 CrossRefGoogle Scholar
  30. Johnson M, Proshutinsky A, Aksenov Y, Nguyen AT, Lindsay R, Haas C, Zhang J, Diansky N, Kwok R, Maslowski W, Häkkinen S, Ashik I, de Cuevas B (2012) Evaluation of Arctic sea ice thickness simulated by Arctic Ocean Model Intercomparison Project models. J Geophys Res Oceans 117(C3):C00D13. doi: 10.1029/2011JC007257 Google Scholar
  31. Kalmikov AG, Heimbach P (2014) A Hessian-based method for uncertainty quantification in global ocean state estimation. SIAM J Sci Comput 36(5):S267–S295. doi: 10.1137/130925311 CrossRefGoogle Scholar
  32. Köhl A (2015) Evaluation of the GECCO2 ocean synthesis: transports of volume, heat and freshwater in the Atlantic. Q J R Meteorol Soc 141(686):166–181. doi: 10.1002/qj.2347 CrossRefGoogle Scholar
  33. Koldunov NV, Koehl A, Stammer D (2013) Properties of adjoint sea ice sensitivities to atmospheric forcing and implications for the causes of the long term trend of Arctic sea ice. Clim Dyn 41(2):227–241. doi: 10.1007/s00382-013-1816-7 CrossRefGoogle Scholar
  34. Kwok R, Cunningham GF (2008) ICESat over Arctic sea ice: estimation of snow depth and ice thickness. J Geophys Res Oceans 113(C8):C08,010. doi: 10.1029/2008JC004753 CrossRefGoogle Scholar
  35. Kwok R, Cunningham GF (2015) Variability of Arctic sea ice thickness and volume from CryoSat-2. Phil Trans R Soc A 373(2045):20140157. doi: 10.1098/rsta.2014.0157 CrossRefGoogle Scholar
  36. Kwok R, Maksym T (2014) Snow depth of the Weddell and Bellingshausen sea ice covers from IceBridge surveys in 2010 and 2011: an examination. J Geophys Res Oceans 119(7):4141–4167. doi: 10.1002/2014JC009943 CrossRefGoogle Scholar
  37. Kwok R, Cunningham GF, Pang SS (2004a) Fram Strait sea ice outflow. J Geophys Res 109(C1):C01,009. doi: 10.1029/2003JC001785 CrossRefGoogle Scholar
  38. Kwok R, Zwally HJ, Yi D (2004b) Icesat observations of arctic sea ice: a first look. Geophys Res Lett 31(16):L16,401. doi: 10.1029/2004GL020309 CrossRefGoogle Scholar
  39. Kwok R, Cunningham G, Zwally H, Yi D (2006) ICESat over Arctic sea ice: interpretation of altimetric and reflectivity profiles. J Geophys Res Oceans 111(C6):C06,006. doi: 10.1029/2005JC003175 CrossRefGoogle Scholar
  40. Kwok R, Hunke E, Maslowski W, Menemenlis D, Zhang J (2008) Variability of sea ice simulations assessed with RGPS kinematics. J Geophys Res 131(C11):C11,012. doi: 10.1029/2008JC004783 CrossRefGoogle Scholar
  41. Kwok R, Cunningham GF, Wensnahan M, Rigor I, Zwally HJ, Yi D (2009) Thinning and volume loss of Arctic sea ice: 2003–2008. J Geophys Res 114(C7):C07,005. doi: 10.1029/2009JC005312 CrossRefGoogle Scholar
  42. Large W, Yeager S (2004) Diurnal to decadal global forcing for ocean and sea-ice models: thedata sets and flux climatologies. NCAR technical note: NCAR/TN-460+STR, CGD Division of the National Center for Atmospheric ResearchGoogle Scholar
  43. Large W, McWilliams J, Doney S (1994) Oceanic vertical mixing: a review and a model with nonlocal boundary layer parameterization. Rev Geophys 32(4):363–403. doi: 10.1029/94RG01872 CrossRefGoogle Scholar
  44. Lindsay R (2010) New unified sea ice thickness climate data record. EOS Trans AGU 91(44):405–406. doi: 10.1029/2010EO440001 CrossRefGoogle Scholar
  45. Lindsay R, Schweiger A (2015) Arctic sea ice thickness loss determined using subsurface, aircraft, and satellite observations. The Cryosphere 9(1):269–283. doi: 10.5194/tc-9-269-2015 CrossRefGoogle Scholar
  46. Lindsay R, Haas C, Hendricks S, Hunkeler P, Kurtz N, Paden J, Panzer B, Sonntag J, Yungel J, Zhang J (2012) Seasonal forecasts of Arctic sea ice initialized with observations of ice thickness. Geophys Res Lett 39(21):L21,502. doi: 10.1029/2012GL053576 CrossRefGoogle Scholar
  47. Lindsay RW, Zhang J (2006) Assimilation of ice concentration in an ice-ocean model. J Atmos Ocean Technol 23(5):742–749. doi: 10.1175/JTECH1871.1 CrossRefGoogle Scholar
  48. Liu J, Curry JA, Rossow WB, Key JR, Wang X (2005) Comparison of surface radiative flux data sets over the Arctic Ocean. J Geophys Res Oceans 110(C2):C02,015. doi: 10.1029/2004JC002381 CrossRefGoogle Scholar
  49. Locarnini RA, Mishonov AV, Antonov JI, Boyer TP, Garcia HE, Baranova OK, Zweng MM, Johnson DR (2010) World Ocean Atlas 2009. In: Levitus S (ed) Temperature, NOAA Atlas NESDIS 69, vol 1. U.S. Government Printing Office, Washington, D.C., p 184Google Scholar
  50. Losch M, Heimbach P (2007) Adjoint sensitivity of an ocean general circulation model to bottom topography. J Phys Oceanogr 37(2):377–393. doi: 10.1175/JPO3017.1 CrossRefGoogle Scholar
  51. Losch M, Herlufsen S, Timmermann R (2006) Effects of heterogeneous surface boundary conditions on parameterized oceanic deep convection. Ocean Model 13(2):156–165. doi: 10.1016/j.ocemod.2005.12.003 CrossRefGoogle Scholar
  52. Losch M, Menemenlis D, Campin JM, Heimbach P, Hill C (2010) On the formulation of sea-ice models. Part 1: effects of different solver implementations and parameterizations. Ocean Model 33(1–2):129–144. doi: 10.1016/j.ocemod.2009.12.008 CrossRefGoogle Scholar
  53. Manizza M, Follows MJ, Dutkiewicz S, Menemenlis D, McClelland JW, Hill CN, Peterson BJ, Key RM (2011) A model of the Arctic Ocean carbon cycle. J Geophys Res Oceans 116(C12):C12,020. doi: 10.1029/2011JC006998 CrossRefGoogle Scholar
  54. Marshall J, Adcroft A, Hill C, Perelman L, Heisey C (1997a) A finite-volume, incompressible Navier Stokes model for studies of the ocean on parallel computers. J Geophys Res Oceans 102(C3):5753–5766. doi: 10.1029/96JC02775 CrossRefGoogle Scholar
  55. Marshall J, Hill C, Perelman L, Adcroft A (1997b) Hydrostatic, quasi-hydrostatic, and nonhydrostatic ocean modeling. J Geophys Res Oceans 102(C3):5733–5752CrossRefGoogle Scholar
  56. Mazloff M, Heimbach P, Wunsch C (2010) An eddy-permitting Southern Ocean state estimate. J Phys Oceanogr 40(5):880–899. doi: 10.1175/2009JPO4236.1 CrossRefGoogle Scholar
  57. McGuire A (2010) An analysis of the carbon balance of the Arctic Basin from 1997 to 2006. Tellus B 62(5):455–474. doi: 10.1111/j.1600-0889.2010.00497.x CrossRefGoogle Scholar
  58. Menemenlis D, Fukumori I, Lee T (2005) Using Green’s functions to calibrate an ocean general circulation model. Mon Weather Rev 133(5):1224–1240. doi: 10.1175/MWR2912.1 CrossRefGoogle Scholar
  59. Menemenlis D, Campin J, Heimbach P, Hill C, Lee T, Nguygen A, Schodlock M, Zhang H (2008) ECCO2: high resolution global ocean and sea ice data synthesis. Mercat Ocean Q Newsl 31:13–21Google Scholar
  60. Miller MD, Adkins JF, Menemenlis D, Schodlok MP (2012) The role of ocean cooling in setting glacial southern source bottom water salinity. Paleoceanography 27(3):PA3207. doi: 10.1029/2012PA002297 CrossRefGoogle Scholar
  61. Naeije M, Schrama E, Scharroo R (2000) The radar altimeter database system project rads. In: Geoscience and remote sensing symposium, 2000. Proceedings of IGARSS 2000. IEEE 2000 international, IEEE, vol 2, pp 487–490Google Scholar
  62. Nguyen A, Menemenlis D, Kwok R (2009) Improved modeling of the Arctic halocline with a sub-grid-scale brine rejection parameterization. J Geophys Res 114(C11):C11,014. doi: 10.1029/2008JC005121 CrossRefGoogle Scholar
  63. Nguyen AT, Kwok R, Menemenlis D (2012) Source and pathway of the Western Arctic upper halocline in a data-constrained coupled ocean and sea ice model. J Phys Oceanogr 42(5):802–823. doi: 10.1175/JPO-D-11-040.1 CrossRefGoogle Scholar
  64. Onogi K, Tslttsui J, Koide H, Sakamoto M, Kobayashi S, Hatsushika H, Matsumoto T, Yamazaki N, Kaalhori H, Takahashi K, Kadokura S, Wada K, Kato K, Oyama R, Ose T, Mannoji N, Taira R (2007) The JRA-25 reanalysis. J Meteorol Soc Jpn 85(3):369–432. doi: 10.2151/jmsj.85.369 CrossRefGoogle Scholar
  65. Overland JE, Wang M (2007) Future regional Arctic sea ice declines. Geophys Res Lett 34(17):L17,705. doi: 10.1029/2007GL030808 CrossRefGoogle Scholar
  66. Parkinson C, Cavalieri D (2008) Arctic sea ice variability and trends, 1979–2006. J Geophys Res 113(C07):C07,003. doi: 10.1029/2007JC004558 Google Scholar
  67. Parkinson CL, Cavalieri DJ (2012) Antarctic sea ice variability and trends, 1979–2010. The Cryosphere 6(4):871–880. doi: 10.5194/tc-6-871-2012 CrossRefGoogle Scholar
  68. Renfrew IA, Moore GWK, Guest PS, Bumke K (2002) A Comparison of surface layer and surface turbulent flux observations over the Labrador Sea with ECMWF analyses and NCEP reanalyses. J Phys Oceanogr 32(2):383–400. doi: 10.1175/1520-0485(2002)032<0383:ACOSLA>2.0.CO;2
  69. Rignot E, Fenty I, Menemenlis D, Xu Y (2012) Spreading of warm ocean waters around Greenland as a possible cause for glacier acceleration. Ann Glaciol 53(60):257–266. doi: 10.3189/2012AoG60A136 CrossRefGoogle Scholar
  70. Schodlok MP, Menemenlis D, Rignot E, Studinger M (2012) Sensitivity of the ice shelf/ocean system to the sub-ice-shelf cavity shape measured by NASA IceBridge in Pine Island Glacier, West Antarctica. Ann Glaciol 53(60):156–162. doi: 10.3189/2012AoG60A073 CrossRefGoogle Scholar
  71. Screen JA, Simmonds I (2010) The central role of diminishing sea ice in recent Arctic temperature amplification. Nature 464(7293):1334–1337. doi: 10.1038/nature09051 CrossRefGoogle Scholar
  72. Semtner A (1976) A Model for the thermodynamic growth of sea ice in numerical investigations of climate. J Phys Oceanogr 6(3):379–389. doi: 10.1175/1520-0485%281976%29006<0379%AAMFTTG>2.0.CO%3B2
  73. Shimada K, Kamoshida T, Itoh M, Nishino S, Carmack E, McLaughlin F, Zimmermann S, Proshutinsky A (2006) Pacific Ocean inflow: influence on catastrophic reduction of sea ice cover in the Arctic Ocean. Geophys Res Lett 33(8):L08,605. doi: 10.1029/2005GL025624 CrossRefGoogle Scholar
  74. Spreen G, Kwok R, Menemenlis D (2011) Trends in Arctic sea ice drift and role of wind forcing: 1992–2009. Geophys Res Lett 38(19):4097–4100. doi: 10.1029/2011GL048970 CrossRefGoogle Scholar
  75. Squire V (2007) Of ocean waves and sea-ice revisited. Cold Reg Sci Technol 49(2):110–133. doi: 10.1016/j.coldregions.2007.04.007 CrossRefGoogle Scholar
  76. Stammer D, Ueyoshi K, Köhl A, Large WG, Josey SA, Wunsch C (2004) Estimating air–sea fluxes of heat, freshwater, and momentum through global ocean data assimilation. J Geophys Res Oceans 109(C5):C05,023. doi: 10.1029/2003JC002082 CrossRefGoogle Scholar
  77. Stroeve J, Holland MM, Meier W, Scambos T, Serreze M (2007) Arctic sea ice decline: faster than forecast. Geophys Res Lett 34(9):L09,501. doi: 10.1029/2007GL029703 CrossRefGoogle Scholar
  78. Stroeve J, Hamilton LC, Bitz CM, Blanchard-Wrigglesworth E (2014) Predicting September sea ice: ensemble skill of the SEARCH sea ice outlook 2008–2013. Geophys Res Lett 41(7):2411–2418. doi: 10.1002/2014GL059388 CrossRefGoogle Scholar
  79. Stroeve JC, Kattsov V, Barrett A, Serreze M, Pavlova T, Holland M, Meier WN (2012a) Trends in Arctic sea ice extent from CMIP5, CMIP3 and observations. Geophys Res Lett 39(16):L16,502. doi: 10.1029/2012GL052676 CrossRefGoogle Scholar
  80. Stroeve JC, Serreze MC, Holland MM, Kay JE, Malanik J, Barrett AP (2012b) The Arctic’s rapidly shrinking sea ice cover: a research synthesis. Clim Change 110(3–4):1005–1027. doi: 10.1007/s10584-011-0101-1 CrossRefGoogle Scholar
  81. Vaughan GL, Bennetts LG, Squire VA (2009) The decay of flexural-gravity waves in long sea ice transects. Phil Trans R Soc A 465(2109):2785–2812. doi: 10.1098/rspa.2009.0187 Google Scholar
  82. Vihma T (2014) Effects of Arctic sea ice decline on weather and climate: a review. Surv Geophys 35(5):1175–1214. doi: 10.1007/s10712-014-9284-0 CrossRefGoogle Scholar
  83. Visbeck M, Fischer J, Schott F (1995) Preconditioning the Greenland Sea for deep convection: ice formation and ice drift. J Geophys Res Oceans 100(C9):18,489–18,502. doi: 10.1029/95JC01611 CrossRefGoogle Scholar
  84. Wang M, Overland JE (2009) A sea ice free summer Arctic within 30 years? Geophys Res Lett 36(7):L07,502. doi: 10.1029/2009GL037820 Google Scholar
  85. Wunsch C (2006) Discrete inverse and state estimation problems: with geophysical fluid applications. Cambridge University Press, CambridgeCrossRefGoogle Scholar
  86. Wunsch C, Heimbach P (2006) Estimated decadal changes in the North Atlantic meridional overturning circulation and heat flux 1993–2004. J Phys Oceanogr 36(11):2012–2024. doi: 10.1175/JPO2957.1 CrossRefGoogle Scholar
  87. Wunsch C, Heimbach P (2007) Practical global oceanic state estimation. Phys D Nonlinear Phenom 230(1–2):197–208. doi: 10.1016/j.physd.2006.09.040 CrossRefGoogle Scholar
  88. Wunsch C, Heimbach P (2013) Ocean circulation and climate, 2nd edn. Elsevier, chap Dynamically and kinematically consistent global ocean circulation state estimates with land and sea ice, pp 553–579Google Scholar
  89. Wunsch C, Heimbach P (2014) Bidecadal thermal changes in the abyssal ocean. J Phys Oceanogr 44(8):2013–2030. doi: 10.1175/JPO-D-13-096.1 CrossRefGoogle Scholar
  90. Wunsch C, Heimbach P, Ponte R, Fukumori I (2009) The global general circulation of the oceans estimated by the ECCO-consortium. Oceanography 22(2):88–103. doi: 10.5670/oceanog.2009.41 CrossRefGoogle Scholar
  91. Zhang J, Hibler WD (1997) On an efficient numerical method for modeling sea ice dynamics. J Geophys Res Oceans 102(C4):8691–8702. doi: 10.1029/96JC03744 CrossRefGoogle Scholar
  92. Zhang J, Thomas DR, Rothrock DA, Lindsay RW, Yu Y, Kwok R (2003) Assimilation of ice motion observations and comparisons with submarine ice thickness data. J Geophys Res Oceans 108(C6):3170. doi: 10.1029/2001JC001041 CrossRefGoogle Scholar
  93. Zwally HJ, Schutz B, Abdalati W, Abshire J, Bentley C, Brenner A, Bufton J, Dezio J, Hancock D, Harding D, Herring T, Minster B, Quinn K, Palm S, Spinhirne J, Thomas R (2002) ICESat’s laser measurements of polar ice, atmosphere, ocean, and land. J Geodyn 34(3–4):405–445. doi: 10.1016/S0264-3707(02)00042-X CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  1. 1.Jet Propulsion LaboratoryCalifornia Institute of TechnologyPasadenaUSA

Personalised recommendations