Advertisement

Climate Dynamics

, Volume 46, Issue 11–12, pp 3657–3667 | Cite as

Dynamics and mechanisms of decadal variability of the Pacific-South America mode over the 20th century

  • Li Zhang
  • Hao Ma
  • Lixin Wu
Article

Abstract

In this paper, decadal variability of the Pacific-South America (PSA) mode is examined from year 1871 to 2008 based on the newly developed ocean and atmosphere reanalysis products. The PSA mode, mirroring the Pacific-North America mode in the Northern Hemisphere, emerges as the second EOF mode of 500 mb geopotential height anomalies. The mode displays substantial interannual-decadal variability with distinct timescales between 3–8 and 10–18 years, respectively. The decadal variability of the PSA mode is found to be associated with the coupled ocean–atmosphere interaction over the subtropical South and tropical Pacific. The subduction of the subtropical temperature anomalies in the South Pacific in conjunction with the tropical–subtropical atmospheric teleconnection plays important role in the decadal variability of the PSA mode.

Keywords

Pacific-South American Subduction Decadal variability Tropical Pacific 

Notes

Acknowledgments

This work is supported by National Natural Science Foundation of China (NSFC) Key Project (41130859), NSFC Innovation Project (41221063), and Zhejiang Provincial Natural Science Foundation of China (LQ14D050001). Discussions with Profs. Wenju Cai and Xiaojun Yuan are greatly appreciated.

References

  1. Baines PG, Cai W (2000) Analysis of an interactive instability mechanism for the Antarctic Circumpolar Wave. J Clim 13:1831–1844CrossRefGoogle Scholar
  2. Cai W, Baines PG (2001) Forcing of the Antarctic Circumpolar Wave by El Niño-Southern Oscillation teleconnections. J Geophys Res 106:9019–9038CrossRefGoogle Scholar
  3. Cai W, Baines PG, Gordon HB (1999) Southern mid-to high-latitude variability, a zonal wavenumber-3 pattern, and the Antarctic Circumpolar Wave in the CSIRO coupled model. J Clim 12:3087–3104CrossRefGoogle Scholar
  4. Carleton AM (2003) Atmospheric teleconnections involving the Southern Ocean. J Geophys Res 108(C4):8080. doi: 10.1029/2000JC000379 CrossRefGoogle Scholar
  5. Carton JA, Giese BS (2008) A reanalysis of ocean climate using Simple Ocean Data Assimilation (SODA). Mon Weather Rev 136:2999–3017CrossRefGoogle Scholar
  6. Ciasto LM, Thompson DWJ (2008) Observations of large-scale ocean–atmosphere interaction in the Southern Hemisphere. J Clim 21:1244–1259CrossRefGoogle Scholar
  7. Compo GP, Whitaker JS, Sardeshmukh PD (2011) The twentieth century reanalysis project. Q J R Meteorol Soc 137:1–28CrossRefGoogle Scholar
  8. Ding RQ, Li JP, Tseng Y-H (2014) The impact of South Pacific extratropical forcing on ENSO and comparisons with the North Pacific. Clim Dyn. doi: 10.1007/s00382-014-2303-5 Google Scholar
  9. Donat MG, Renggli D, Wild S, Alexander LV, Leckebusch GC, Ulbrich U (2011) Reanalysis suggests longterm upward trends in European storminess since 1871. Geophys Res Lett. doi: 10.1029/2011GL047995 Google Scholar
  10. Fogt RL, Bromwich DH (2006) Decadal variability of the ENSO teleconnection to the high-latitude South Pacific governed by coupling with the Southern Annular Mode*. J Clim 19:979–997CrossRefGoogle Scholar
  11. Gan B, Wu L (2013) Seasonal and long-term coupling between wintertime storm tracks and sea surface temperature in the North Pacific. J Clim 26:6123–6136CrossRefGoogle Scholar
  12. Ghil M, Mo K (1991) Intraseasonal oscillations in the global atmosphere. Part I: Northern Hemisphere and tropics. J Atmos Sci 48:752–779CrossRefGoogle Scholar
  13. Giese BC, Urizar SC, Fuckar NS (2002) Southern Hemisphere origins of the 1976 climate shift. J Clim 12:2113–2123Google Scholar
  14. Gong D, Wang S (1999) Definition of Antarctic oscillation index. Geophys Res Lett 26:459–462CrossRefGoogle Scholar
  15. Gu D, Philander SGH (1997) Interdecadal climate fluctuations that depend on exchange between the tropics and extratropics. Science 275:805–807CrossRefGoogle Scholar
  16. Hong L, Zhang L, Chen Z, Wu L (2014) Linkage between the Pacific Decadal Oscillation and the low frequency variability of the Pacific Subtropical Cell. J Geophys Res 119:3464–3477CrossRefGoogle Scholar
  17. Hoskins BJ, Karoly DJ (1981) The steady linear response of a spherical atmosphere to thermal and orographic forcing. J Atmos Sci 38:1179–1196CrossRefGoogle Scholar
  18. Jin D, Kirtman BP (2009) Why the Southern Hemisphere ENSO responses lead ENSO? J Geophys Res 114(D2):3101. doi: 10.1029/2009JD012657 Google Scholar
  19. Karoly DJ (1989) Southern Hemisphere circulation features associated with El Niño-Southern Oscillation events. J Clim 2:1239–1252CrossRefGoogle Scholar
  20. Karoly DJ, Hope P, Jones PD (1996) Decadal variations of the Southern Hemisphere circulation. Int J Climatol 16:723–738CrossRefGoogle Scholar
  21. Kidson JW (1988) Interannual variations in the Southern Hemisphere circulation. J Clim 1:1177–1198CrossRefGoogle Scholar
  22. Kleeman R, McCreary JP, Klinger BA (1999) A mechanism for generating ENSO decadal variability. Geophys Res Lett 26:1743–1746CrossRefGoogle Scholar
  23. Klinck JM, Nowlin WD Jr (2001) Antarctic circumpolar current. Encycl Ocean Sci 1:151–159CrossRefGoogle Scholar
  24. Lau NC, Nath MJ (1994) A modeling study of the relative roles of tropical and extratropical SST anomalies in the variability of the global atmosphere–ocean system. J Clim 7:1184–1207CrossRefGoogle Scholar
  25. Liu Z, Alexander MA (2007) Atmospheric bridge, oceanic tunnel, and global climatic teleconnections. Rev Geophys. doi: 10.1029/2005RG000172 Google Scholar
  26. Luo JJ, Yamagata T (2001) Long-term El Niño-Southern Oscillation (ENSO-like) variation with special emphasis on the South Pacific. J Geophys Res 106:22211–22227CrossRefGoogle Scholar
  27. Lysne J, Chang P, Giese B (1997) Impact of the extratropical Pacific on equatorial variability. Geophys Res Lett 24:2589–2592CrossRefGoogle Scholar
  28. Ma H, Wu L (2011) Global teleconnections in response to freshening over the Antarctic Ocean. J Clim 24:1071–1088CrossRefGoogle Scholar
  29. Mann ME, Lees JM (1996) Robust estimation of background noise and signal detection in climatic time series. Clim Change 33:409–445CrossRefGoogle Scholar
  30. Mayewski PA et al (2009) State of the Antarctic and Southern Ocean climate system. Rev Geophys. doi: 10.1029/2007RG000231 Google Scholar
  31. McCreary JP, Lu P (1994) Interaction between the subtropical and equatorial ocean circulations: the subtropical cell. J Phys Oceanogr 24:466–497CrossRefGoogle Scholar
  32. Mo KC (2000) Relationships between low-frequency variability in the Southern Hemisphere and sea surface temperature anomalies. J Clim 13:3599–3610CrossRefGoogle Scholar
  33. Mo KC, Ghil M (1987) Statistics and dynamics of persistent anomalies. J Atmos Sci 44:877–902CrossRefGoogle Scholar
  34. Mo KC, Higgins RW (1998) The Pacific-South American modes and tropical convection during the Southern Hemisphere winter. Mon Weather Rev 126:1581–1596CrossRefGoogle Scholar
  35. Mo KC, Paegle JN (2001) The Pacific-South American modes and their downstream effects. Int J Climatol 21:1211–1229CrossRefGoogle Scholar
  36. Peterson RG, White WB (1998) Slow oceanic teleconnections linking the Antarctic Circumpolar Wave with the tropical El Niño-Southern Oscillation. J Geophys Res 103:24573–24583CrossRefGoogle Scholar
  37. Rind D, Chandler M, Lerner J (2001) Climate response to basin-specific changes in latitudinal temperature gradients and implications for sea ice variability. J Geophys Res 106:20161–20173CrossRefGoogle Scholar
  38. Saravanan R, McWilliams JC (1997) Stochasticity and spatial resonance in interdecadal climate fluctuations. J Clim 10:2299–2320CrossRefGoogle Scholar
  39. Schneider N, Venzke S, Miller AJ, Pierce DW, Barnett TP, Deser C, Latif M (1999) Pacific thermocline bridge revisited. Geophys Res Lett 26:1329–1332CrossRefGoogle Scholar
  40. Szeredi I, Karoly D (1987) The horizontal structure of monthly fluctuations of the Southern Hemisphere troposphere from station data. Aust Meteorol Mag 35:119–129Google Scholar
  41. Thompson DWJ, Solomon S (2002) Interpretation of recent Southern Hemisphere climate change. Science 296:895–899CrossRefGoogle Scholar
  42. Thompson DWJ, Wallace JM, Hegerl GC (2000) Annular modes in the extratropical circulation. Part II: trends. J Clim 13:1018–1036CrossRefGoogle Scholar
  43. Wallace JM, Gutzler DS (1981) Teleconnections in the geopotential height field during the Northern Hemisphere winter. Mon Weather Rev 109:784–812CrossRefGoogle Scholar
  44. White WB, Peterson RG (1996) An Antarctic circumpolar wave in surface pressure, wind, temperature and sea-ice extent. Nature 380:699–702 CrossRefGoogle Scholar
  45. Wu L, Liu Z, Gallimore R, Jacob R, Lee D, Zhong Y (2003) A coupled modeling study of Pacific decadal variability: the tropical mode and the North Pacific mode. J Clim 16:1101–1120CrossRefGoogle Scholar
  46. Wu L, Liu Z (2005) North Atlantic decadal variability: air–sea coupling, oceanic memory, and potential Northern Hemisphere resonance. J Clim 18:1101–1120Google Scholar
  47. Wu L, Liu Z, Li C (2007) Extratropical control of recent tropical Pacific decadal climate variability: a relay teleconnection. Clim Dyn 28:99–112CrossRefGoogle Scholar
  48. Yuan X (2004) ENSO-related impacts on Antarctic sea ice: a synthesis of phenomenon and mechanisms. Antarct Sci 16:415–425CrossRefGoogle Scholar
  49. Yuan X, Li C (2008) Climate modes in southern high latitudes and their impacts on Antarctic sea ice. J Geophys Res. doi: 10.1029/2006JC004067 Google Scholar
  50. Yuan X, Yonekura E (2011) Decadal variability in the Southern Hemisphere. J Geophys Res. doi: 10.1029/2011JD015673 Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  1. 1.Physical Oceanography Laboratory/Qingdao Collaborative Innovation Center of Marine Science and TechnologyOcean University of ChinaQingdaoPeople’s Republic of China
  2. 2.Zhejiang Climate CenterZhejiang Meteorological BureauHangzhouPeople’s Republic of China

Personalised recommendations