Potential climate effect of mineral aerosols over West Africa: Part II—contribution of dust and land cover to future climate change

  • Zhenming Ji
  • Guiling Wang
  • Miao Yu
  • Jeremy S. Pal
Article

Abstract

Mineral dust aerosols are an essential component of climate over West Africa, however, little work has been performed to investigate their contributions to potential climate change. A set of regional climate model experiments with and without mineral dust processes and land cover changes is performed to evaluate their climatic effects under the Representative Concentration Pathway 8.5 for two global climate models. Results suggest surface warming to be in the range of 4–8 °C by the end of the century (2081–2100) over West Africa with respect to the present day (1981–2000). The presence of mineral dusts dampens the warming by 0.1–1 °C in all seasons. Accounting for changes in land cover enhances the warming over the north of Sahel and dampens it to the south in spring and summer; however, the magnitudes are smaller than those resulting from dusts. Overall dust loadings are projected to increase, with the greatest increase occurring over the Sahara and Sahel in summer. Accounting for land cover changes tends to reduce dust loadings over the southern Sahel. Future precipitation is projected to decrease by 5–40 % in the western Sahara and Sahel and increase by 10–150 % over the eastern Sahel and Guinea Coast in JJA. A dipole pattern of future precipitation changes is attributed to dust effects, with decrease in the north by 5–20 % and increase by 5–20 % in the south. Future changes in land cover result in a noisy non-significant response with a tendency for slight wetting in MAM, JJA, and SON and drying in DJF.

Keywords

Mineral dust Land cover Climate projection Regional climate modelling West Africa 

References

  1. Abiodun BJ, Pal JS, Afiesimama EA, Gutowski WJ, Adedoyin A (2007) Simulation of West African monsoon using the RegCM3. Part II: impact of deforestation and desertification. Int J Climatol. doi:10.1007/s00704-007-0333-1
  2. Afiesimama EA, Pal JS, Abiodun BJ, Gutowski WJ, Adedoyin A (2006) Simulation of West African monsoon using the RegCM3. Part I: model validation and interannual variability. Theor Appl Climatol. doi:10.1007/s00704-005-0202-8
  3. Alfaro SC, Gomes L (2001) Modeling mineral aerosol production by wind erosion: emission intensities and aerosol size distribution in source areas. J Geophys Res 106:18075–18084. doi:10.1029/2000JD900339 CrossRefGoogle Scholar
  4. Balkanski Y, Schulz M, Claquin T, Guibert S (2007) Reevaluation of mineral aerosol radiative forcings suggests a better agreement with satellite and AERONET data. Atmos Chem Phys 7:81–95. doi:10.5194/acp-7-81-2007 CrossRefGoogle Scholar
  5. Collins M, Knutti R, Arblaster J, Dufresne JL, Fichefet T, Friedlingstein P, Gao X, Gutowski WJ, Johns T, Krinner G, Shongwe M, Tebaldi C, Weaver AJ, Wehner M. (2013) Long-term Climate Change: Projections, Com-mitments and Irreversibility. In: Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change [Stocker TF, Qin D, Plattner G-K, Tignor M, Allen SK, Boschung J, Nauels A, Xia Y, Bex V, Midgley PM (eds)]. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USAGoogle Scholar
  6. Cook KH (1999) Generation of the African easterly jet and its role in determining West African precipitation. J Clim 12:1165–1184CrossRefGoogle Scholar
  7. Diffenbaugh NS, Giorgi F (2012) Climate change hotspots in the CMIP5 global climate model ensemble. Clim Change 114:813–822. doi:10.1007/s10584-012-0570-x CrossRefGoogle Scholar
  8. Fan JW, Leung LR, Rosenfeld D, Chen Q, Li ZQ, Zhang JQ, Yan HR (2013) Microphysical effects determine macrophysical response for aerosol impacts on deep convective clouds. Proc Natl Acad Sci USA 110(48):E4581–E4590. doi:10.1073/pnas.1316830110 CrossRefGoogle Scholar
  9. Gao XJ, Shi Y, Zhang DF, Wu J, Giorgi F, Ji ZM, Wang YG (2012) Uncertainties in monsoon precipitation projections over China: results from two high-resolution RCM simulations. Clim Res 52:213–226CrossRefGoogle Scholar
  10. Ginoux P, Garbuzov D, Hsu NC (2010) Identification of anthropogenic and natural dust sources using Moderate Resolution Imaging Spectroradiometer (MODIS) Deep Blue level 2 data. J Geophys Res Atmos 115:D05204CrossRefGoogle Scholar
  11. Ginoux P, Prospero JM, Gill TE, Hsu NC, Zhao M (2012) Global-scale attribution of anthropogenic and natural dust sources and their emission rates based on MODIS Deep Blue aerosol products. Rev Geophys 50:RG3005Google Scholar
  12. Giorgi F, Bi X (2000) A study of the internal variability of a regional climate model. J Geophys Res Atmos 105:29503–29521CrossRefGoogle Scholar
  13. Giorgi F, Coppola E, Solmon F, Mariotti L, Sylla MB, Bi XQ, Elguindi N, Diro GT, Nair V, Giuliani G, Turuncoglu UU, Cozzini S, Güttler I, O’Brien TA, Tawfik AB, Shalaby A, Zakey AS, Steiner AL, Stordal F, Sloan LC, Brankovic C (2012) RegCM4: model description and preliminary tests over multiple CORDEX domains. Clim Res 52:7–29CrossRefGoogle Scholar
  14. Grell GA, Dudhia J, Stauer DR (1994) A description of the fifth-generation Penn State/NCAR mesoscale model (MM5). Technical report. National Center for Atmospheric Research, BoulderGoogle Scholar
  15. Hawkins E, Sutton R (2009) The potential to narrow uncertainty in regional climate predictions. Am Meteorol Soc Bull. doi:10.1175/2009BAMS2607.1
  16. Hurtt GC, Chini LP, Frolking S, Betts RA, Feddema J, Fischer G, Fisk JP, Hibbard K, Houghton RA, Janetos A, Jones CD, Kindermann G, Kinoshita T, Goldewijk KK, Riahi K, Shevliakova E, Smith S, Stehfest E, Thomson A, Thornton P, van Vuuren DP, Wang YP (2011) Harmonization of land-use scenarios for the period 1500–2100: 600 years of global gridded annual land-use transitions, wood harvest, and resulting secondary lands. Clim Change 109:117–161. doi:10.1007/s10584-011-0153-2 CrossRefGoogle Scholar
  17. Intergovernmental Panel on Climate Change (IPCC) (2007) Climate Change 2007: the physical science basis. In: Solomon S, Qin D, Manning M, Chen Z, Marquis M, Averyt KB, Tignor M, Miller HL (eds) Contribution of WGI to the IPCC AR4. Cambridge University Press, CambridgeGoogle Scholar
  18. Jacobson MZ, Streets DG (2009) Influence of future anthropogenic emissions on climate, natural emissions, and air quality. J Geophys Res 114:D08118. doi:10.1029/2008JD011476 Google Scholar
  19. Ji ZM, Wang GL, Pal JS, Yu M (2015) Potential climate effect of mineral aerosols over West Africa Part I: model validation and contemporary climate evaluation. Clim Dyn. doi:10.1007/s00382-015-2641-y Google Scholar
  20. Kgatuke MM, Landman WA, Beraki A, Mbedzi MP (2008) The internal variability of the RegCM3 over South Africa. Int J Climatol 28:505–520CrossRefGoogle Scholar
  21. Kok JF (2011) A scaling theory for the size distribution of emitted dust aerosols suggests climate models underestimate the size of the global dust cycle. Proc Natl Acad Sci USA 108:1016–1021. doi:10.1073/pnas.1014798108 CrossRefGoogle Scholar
  22. Konare A, Zakey AS, Solmon F, Giorgi F, Rauscher S, Ibrah S, Bi X (2008) A regional climate modeling study of the effect of desert dust on the West African monsoon. J Geophys Res 113:D12206. doi:10.1029/2007JD009322 CrossRefGoogle Scholar
  23. Lavaysse C, Flamant C, Janicot S, Parker DJ, Lafore JP, Sultan B, Pelon J (2009) Seasonal evolution of the West African heat low: a climatological perspective. Clim Dyn 33:313–330. doi:10.1007/s00382-009-0553-4 CrossRefGoogle Scholar
  24. Lawrence PJ, Chase TN (2007) Representing a new MODIS consistent land surface in the Community Land Model (CLM 3.0). J Geophys Res 112:G01023. doi:10.1029/2006JG000168 Google Scholar
  25. Li Z, Niu F, Fan JW, Liu YG, Rosenfeld D, Ding YN (2011) Longterm impacts of aerosols on the vertical development of clouds and precipitation. Nat Geosci 4(12):888–894CrossRefGoogle Scholar
  26. Liao H, Zhang Y, Chen WT, Raes F, Seinfeld JH (2009) Effect of chemistry–aerosol–climate coupling on predictions of future climate and future levels of tropospheric ozone and aerosols. J Geophys Res 114:D10306CrossRefGoogle Scholar
  27. Mahowald NM, Yoshioka M, Collins WD, Conley AJ, Fillmore DW, Coleman DB (2006) Climate response and radiative forcing from mineral aerosols during the last glacial maximum, pre-industrial, current and doubled-carbon dioxide climates. Geophys Res Lett 33:L20705. doi:10.1029/2006GL026126 CrossRefGoogle Scholar
  28. Meehl GA, Washington WM, Arblaster JM, Hu AX, Teng HY, Kay JE, Gettelman A, Lawrence DM, Sanderson BM, Strand WG (2013) Climate change projections in CESM1(CAM5) compared to CCSM4. J Clim 26:6287–6308. doi:10.1175/JCLI-D-12-00572.1 CrossRefGoogle Scholar
  29. Moss RH, Edmonds JA, Hibbard KA, Manning MR, Rose SK, van Vuuren DP, Carter TR, Emori S, Kainuma M, Kram T, Meehl GA, Mitchell JFB, Nakicenovic N, Riahi K, Smith SJ, Ronald Stouffer RJ, Thomson AM, Weyant JP, Wilbanks TJ (2010) The next generation of scenarios for climate change research and assessment. Nature 463(7282):747–756CrossRefGoogle Scholar
  30. Mulitza S, Heslop D, Pittauerova D, Fischer H, Meyer I, Stuut JB, Zabel M, Mollenhauer G, Collins JA, Kuhnert H, Schulz M (2010) Increase in African dust flux at the onset of commercial agriculture in the Sahel region. Nature 466:226–228CrossRefGoogle Scholar
  31. Myhre G, Shindell D, Bréon FM, Collins W, Fuglestvedt J, Huang J, Koch D, Lamarque JF, Lee D, Mendoza B, Nakajima T, Robock A, Stephens G, Takemura T, Zhang H (2013) Anthropogenic and Natural Radiative Forc-ing. In: Climate Change 2013: the physical science basis. Contribution of working group I to the fifth assessment report of the intergovernmental panel on climate change [Stocker TF, Qin D, Plattner G-K, Tignor M, Allen SK, Boschung J, Nauels A, Xia Y, Bex V, Midgley PM (eds)]. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USAGoogle Scholar
  32. Nozawa T, Nagashima T, Ogura T, Yokohata T, Okada N, Shiogama H. (2007). Climate change simulations with a coupled ocean-atmosphere GCM called the Model for Interdisciplinary Research on Climate: MIROC, CGER Supercomputer monograph reports, 12, Center For Global Environmental Research, National Institute for Environmental Studies, Tsukuba, JapanGoogle Scholar
  33. Oleson KW, Lawrence DM, Bonan GB, Drewniak B, Huang M, Koven CD, Levis S, Li F, Riley WJ, Subin ZM, Swenson SC, Thornton PE, Bozbiyik A, Fisher R, Kluzek E, Lamarque JF, Lawrence PJ, Leung LR, Lipscomb W, Muszala S, Ricciuto DM, Sacks W, Sun Y, Tang J, Yang ZL (2013) Technical description of version 4.5 of the Community Land Model (CLM). NCAR Technical Note NCAR/TN-503 + STR. doi:10.5065/D6RR1W7M
  34. Otieno VO, Anyah RO (2012) Effects of land use changes on climate in the Greater Horn of Africa. Clim Res 52:77–95CrossRefGoogle Scholar
  35. Pal JS, Giorgi F, Bi X, Elguindi N, Solmon F, Rauscher SA, Gao X, Francisco R, Zakey A, Winter J, Ashfaq M, Syed FS, Sloan LC, Bell JL, Diffenbaugh NS, Karmacharya J, Konaré A, Martinez D, da Rocha RP, Steiner AL (2007) Regional climate modeling for the developing World: the ICTP RegCM3 and RegCNET. Bull Am Meteorol Soc 88:1395–1409CrossRefGoogle Scholar
  36. Qian Y, Giorgi F, Huang Y, Chameides WL, Luo C (2001) Simulation of anthropogenic sulfur over East Asia with a regional coupled chemistry-climate model. Tellus B 53B:171–191CrossRefGoogle Scholar
  37. Randall DA, Wood RA, Bony S, Colman R et al (2007) Climate models and their evaluation. In: Solomon S, Qin D, Manning M, Chen Z et al (eds) Climate change 2007: the physical science basis. Contribution of working group I to the 4th assessment report of the intergovernmental panel on climate change. Cambridge University Press, CambridgeGoogle Scholar
  38. Riahi K, Rao S, Krey V, Cho C, Chirkov V, Fischer G, Kindermann G, Nakicenovic N, Rafaj P (2011) RCP 8.5—A scenario of comparatively high greenhouse gas emissions. Clim Change 109:33–57. doi:10.1007/s10584-011-0149-y CrossRefGoogle Scholar
  39. Roehrig R, Bouniol D, Guichard F, Hourdin F, Redelsperger JL (2013) The present and future of the West African Monsoon: a process-oriented assessment of CMIP5 simulations along the AMMA Transect. J Clim 26:6471–6505. doi:10.1175/JCLI-D-12-00505.1 CrossRefGoogle Scholar
  40. Sassen K, DeMott PJ, Prospero JM, Poellot MR (2003) Saharan dust storms and indirect aerosol effects on clouds: CRYSTAL-FACE results. Geophys Res Lett 30:1633. doi:10.1029/2003GL017371 CrossRefGoogle Scholar
  41. Segele ZT, Leslie LM, Lamb PJ (2009) Evaluation and adaptation of a regional climate model for the Horn of Africa: rainfall climatology and interannual variability. Int J Climatol 29:47–65. doi:10.1002/joc.1681 CrossRefGoogle Scholar
  42. Solmon F, Giorgi F, Liousse C (2006) Aerosol modelling for regional climate studies: application to anthropogenic particles and evaluation over a European/African domain. Tellus B 58(1):51–72CrossRefGoogle Scholar
  43. Solmon F, Mallet M, Elguindi N, Giorgi F, Zakey A, Konare A (2008) Dust aerosol impact on regional precipitation over western Africa, mechanisms and sensitivity to absorption properties. Geophys Res Lett 35:L24705. doi:10.1029/2008GL035900 CrossRefGoogle Scholar
  44. Solmon F, Elguindi N, Mallet M (2012) Radiative and climatic effects of dust over West Africa, as simulated by a regional climate model. Clim Res 52:97–113CrossRefGoogle Scholar
  45. Stanelle T, Bey I, Raddatz T, Reick C, Tegen I (2014) Anthropogenically induced changes in twentieth century mineral dust burden and the associated impact on radiative forcing. J Geophys Res Atmos 119:13526–13546. doi:10.1002/2014JD022062 CrossRefGoogle Scholar
  46. Sylla MB, Gaye AT, Pal JS, Jenkins GS, Bi XQ (2009) High-resolution simulations of West African climate using regional climate model (RegCM3) with different lateral boundary conditions. Theor Appl Climatol 98(3–4):293–314CrossRefGoogle Scholar
  47. Taylor KE, Stouffer RJ, Meehl GA (2012) An overview of CMIP5 and the experiment design. Bull Am Meteorol Soc 93:485–498. doi:10.1175/BAMS-D-11-00094.1 CrossRefGoogle Scholar
  48. Tegen I, Werner M, Harrison SP, Kohfeld KE (2004) Relative importance of climate and land use in determining present and future global soil dust emission. Geophys Res Lett 31:L05105. doi:10.1029/2003GL019216 Google Scholar
  49. Wang G, Yu M, Pal JS, Mei R, Bonan GB, Levis S, Thornton PE (2015) On the development of a coupled regional climate-vegetation model RCM-CLM-CN-DV and its validation in tropical Africa. Clim Dyn. doi:10.1007/s00382-015-2596-z Google Scholar
  50. Woodward S, Roberts DL, Betts RA (2005) A simulation of the effect of climate change-induced desertification on mineral dust aerosol. Geophys Res Lett 32:L18810. doi:10.1029/2005GL023482 Google Scholar
  51. Yoshioka M, Mahowald NM, Conley AJ, Collins WD, Fillmore DW, Zender CS, Coleman DB (2007) Impact of desert dust radiative forcing on Sahel precipitation: relative importance of dust compare to sea surface temperature variations, vegetation changes and greenhouse gas warming. J Clim 20:1445–1467. doi:10.1175/JCLI4056.1 CrossRefGoogle Scholar
  52. Zakey AS, Solmon F, Giorgi F (2006) Implementation and testing of a desert dust module in a regional climate model. Atmos Chem Phys 6:4687–4704. doi:10.5194/acp-6-4687-2006 CrossRefGoogle Scholar
  53. Zhou LM, Tian YH, Myneni RB, Ciais P, Saatchi S, Liu YY, Piao SL, Chen HS, Vermote EF, Song CH, Hwang T (2014) Widespread decline of Congo rainforest greenness in the past decade. Nature 509(7498):86–90. doi:10.1038/nature13265 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • Zhenming Ji
    • 1
    • 2
  • Guiling Wang
    • 2
  • Miao Yu
    • 2
  • Jeremy S. Pal
    • 1
  1. 1.Department of Civil Engineering and Environmental Science, Frank R. Seaver College of Science and EngineeringLoyola Marymount UniversityLos AngelesUSA
  2. 2.Department of Civil and Environmental Engineering, Center for Environmental Sciences and EngineeringUniversity of ConnecticutStorrs MansfieldUSA

Personalised recommendations