Climate Dynamics

, Volume 46, Issue 11–12, pp 3633–3644 | Cite as

How will climate change affect explosive cyclones in the extratropics of the Northern Hemisphere?

  • C. SeilerEmail author
  • F. W. Zwiers


Explosive cyclones are rapidly intensifying low pressure systems generating severe wind speeds and heavy precipitation primarily in coastal and marine environments. This study presents the first analysis on how explosive cyclones respond to climate change in the extratropics of the Northern Hemisphere. An objective-feature tracking algorithm is used to identify and track cyclones from 23 CMIP5 climate models for the recent past (1981–1999) and future (2081–2099). Explosive cyclones are projected to shift northwards by about \(2.2^\circ\) latitude on average in the northern Pacific, with fewer and weaker events south of \(45^\circ \hbox {N}\), and more frequent and stronger events north of this latitude. This shift is correlated with a poleward shift of the jet stream in the inter-model spread (\(R=0.56\)). In the Atlantic, the total number of explosive cyclones is projected to decrease by about 17 % when averaging across models, with the largest changes occurring along North America’s East Coast. This reduction is correlated with a decline in the lower-tropospheric Eady growth rate (\(R=0.51\)), and is stronger for models with smaller frequency biases (\(R=-0.65\)). The same region is also projected to experience a small intensification of explosive cyclones, with larger vorticity values for models that predict stronger increases in the speed of the jet stream (\(R=0.58\)). This strengthening of the jet stream is correlated with an enhanced sea surface temperature gradient in the North Atlantic (\(R=-0.63\)). The inverse relationship between model bias and projection, and the role of model resolution are discussed.


Explosive cyclones Climate change CMIP5 climate models 



The authors gratefully acknowledge the financial support of the Marine Environmental Observation Prediction and Response Network (MEOPAR) for this research. We thank Dr. Kevin Hodges from the University of Reading (UK) for supporting our application of his cyclone tracking algorithm. We acknowledge the World Climate Research Programme’s Working Group on Coupled Modelling, which is responsible for CMIP, and we thank the climate modeling groups (listed in Table 1 of this paper) for producing and making available their model output. For CMIP the U.S. Department of Energy’s Program for Climate Model Diagnosis and Intercomparison provides coordinating support and led development of software infrastructure in partnership with the Global Organization for Earth System Science Portals. We are grateful for the constructive comments from two anonymous reviewers. Please contact Christian Seiler ( for obtaining the output data presented in this research.


  1. Arblaster J, Dufresne J-L, Fichefet T, Friedlingstein P, Gao X, Gutowski WJ Jr, Johns T, Krinner G, Shongwe M, Tebaldi C, Weaver AJ, Wehner M (2013) Long-term climate change: projections, commitments and irreversibility. In: Climate change 2013: the physical science basis. Working Group I contribution to the fifth assessment report of the intergovernmental panel on climate change, technical report, Groupe d’experts intergouvernemental sur l’evolution du climat/intergovernmental panel on climate change-IPCC, C/O World Meteorological Organization, 7bis Avenue de la Paix, CP 2300 CH-1211 Geneva 2 (Switzerland)Google Scholar
  2. Arora VK, Scinocca JF, Boer GJ, Christian JR, Denman KL, Flato GM, Kharin VV, Lee WG, Merryfield WJ (2011) Carbon emission limits required to satisfy future representative concentration pathways of greenhouse gases. Geophys Res Lett 38(5):1–6CrossRefGoogle Scholar
  3. Barnes EA, Polvani L (2013) Response of the midlatitude jets, and of their variability, to increased greenhouse gases in the CMIP5 models. J Clim 26(18):7117–7135CrossRefGoogle Scholar
  4. Bengtsson L, Hodges KI, Roeckner E (2006) Storm tracks and climate change. J Clim 19(15):3518–3543CrossRefGoogle Scholar
  5. Bentsen M, Bethke I, Debernard JB, Iversen T, Kirkevåg A, Seland Ø, Drange H, Roelandt C, Seierstad IA, Hoose C et al (2013) The Norwegian earth system model, NorESM1-M-Part 1: description and basic evaluation of the physical climate. Geosci Model Dev 6:687–720CrossRefGoogle Scholar
  6. Bracegirdle TJ, Stephenson DB (2013) On the robustness of emergent constraints used in multimodel climate change projections of Arctic warming. J Clim 26(2):669–678CrossRefGoogle Scholar
  7. Chang EKM (2014) Impacts of background field removal on CMIP5 projected changes in Pacific winter cyclone activity. J Geophys Res Atmos 119(8):4626–4639CrossRefGoogle Scholar
  8. Chang EKM, Lee S, Swanson KL (2002) Storm track dynamics. J Clim 15(16):2163–2183CrossRefGoogle Scholar
  9. Chang EKM, Guo Y, Xia X (2012) CMIP5 multimodel ensemble projection of storm track change under global warming. J Geophys Res Atmos (1984–2012) 117:D23Google Scholar
  10. Charlton-Perez AJ, Baldwin MP, Birner T, Black RX, Butler AH, Calvo N, Davis NA, Gerber EP, Gillett N, Hardiman S et al (2013) On the lack of stratospheric dynamical variability in low-top versions of the CMIP5 models. J Geophys Res Atmos 118(6):2494–2505CrossRefGoogle Scholar
  11. Christensen JH, Krishna Kumar K, Aldrian E, An SI, Cavalcanti IFA, de Castro M, Dong W, Goswami P, Hall A, Kanyanga JK, Kitoh A, Kossin J, Lau NC, Renwick J, Stephenson DB, Xie SP, Zhou T (2013) Climate phenomena and their relevance for future regional climate change. In: Climate change 2013: the physical science basis. Working Group I contribution to the fifth assessment report of the intergovernmental panel on climate change, technical report, Groupe d’experts intergouvernemental sur l’evolution du climat/intergovernmental Panel on Climate Change-IPCC, C/O World Meteorological Organization, 7bis Avenue de la Paix, CP 2300 CH-1211 Geneva 2 (Switzerland)Google Scholar
  12. Donner LJ, Wyman BL, Hemler RS, Horowitz LW, Ming Y, Zhao M, Golaz J-C, Ginoux P, Lin S-J, Daniel Schwarzkopf M et al (2011) The dynamical core, physical parameterizations, and basic simulation characteristics of the atmospheric component AM3 of the GFDL global coupled model CM3. J Clim 24(13):3484–3519CrossRefGoogle Scholar
  13. Dufresne J-L, Foujols M-A, Denvil S, Caubel A, Marti O, Aumont O, Balkanski Y, Bekki S, Bellenger H, Benshila R et al (2013) Climate change projections using the IPSL-CM5 Earth System Model: from CMIP3 to CMIP5. Clim Dyn 40(9–10):2123–2165CrossRefGoogle Scholar
  14. Dunne JP, John JG, Adcroft AJ, Griffies SM, Hallberg RW, Shevliakova E, Stouffer RJ, Cooke W, Dunne KA, Harrison MJ et al (2012) GFDL’s ESM2 global coupled climate-carbon Earth System Models. Part I: physical formulation and baseline simulation characteristics. J Clim 25(19):6646–6665CrossRefGoogle Scholar
  15. Fink AH, Pohle S, Pinto Joaquim G, Knippertz P (2012) Diagnosing the influence of diabatic processes on the explosive deepening of extratropical cyclones. Geophys Res Lett 39:7CrossRefGoogle Scholar
  16. Finnis J, Holland Marika M, Serreze Mark C, Cassano John J (2007) Response of Northern Hemisphere extratropical cyclone activity and associated precipitation to climate change, as represented by the Community Climate System Model. J Geophys Res Biogeosci (2005–2012) 112:G4Google Scholar
  17. Flato G, Marotzke J, Abiodun B, Braconnot P, Chou SC, Collins W, Cox P et al (2013) Evaluation of climate models. In: Climate change 2013: the physical science basis. Working Group I contribution to the fifth assessment report of the intergovernmental panel on climate change, technical report, Groupe d’experts intergouvernemental sur l’evolution du climat/intergovernmental panel on climate change-IPCC, C/O World Meteorological Organization, 7bis Avenue de la Paix, CP 2300 CH-1211 Geneva 2 (Switzerland)Google Scholar
  18. Gent PR, Danabasoglu G, Donner LJ, Holland MM, Hunke EC, Jayne SR, Lawrence DM, Neale RB, Rasch PJ, Vertenstein M et al (2011) The community climate system model version 4. J Clim 24(19):4973–4991CrossRefGoogle Scholar
  19. Giorgetta MA, Jungclaus J, Reick CH, Legutke S, Bader J, Böttinger M, Brovkin V, Crueger T, Esch M, Fieg K et al (2013) Climate and carbon cycle changes from 1850 to 2100 in MPI-ESM simulations for the Coupled Model Intercomparison Project phase 5. J Adv Model Earth Syst 5(3):572–597CrossRefGoogle Scholar
  20. Hall NMJ, Hoskins BJ, Valdes PJ, Senior CA (1994) Storm tracks in a high-resolution GCM with doubled carbon dioxide. Q J R Meteorol Soc 120(519):1209–1230CrossRefGoogle Scholar
  21. Hannachi A, Jolliffe IT, Stephenson DB (2007) Empirical orthogonal functions and related techniques in atmospheric science: a review. Int J Climatol 27(9):1119–1152CrossRefGoogle Scholar
  22. Harrell FE (2014) Hmisc: Harrell Miscellaneous. R package version 3.14-4.
  23. Harvey BJ, Shaffrey LC, Woollings TJ (2014) Equator-to-pole temperature differences and the extra-tropical storm track responses of the CMIP5 climate models. Clim Dyn 43(5–6):1171–1182CrossRefGoogle Scholar
  24. Harvey BJ, Shaffrey LC, Woollings TJ (2015) Deconstructing the climate change response of the Northern Hemisphere wintertime storm tracks. Clim Dyn. doi: 10.1007/s00382-015-2510-8 Google Scholar
  25. Held IM (1993) Large-scale dynamics and global warming. Bull Am Meteorol Soc 74(2):228–241CrossRefGoogle Scholar
  26. Hodges KI (1999) Adaptive constraints for feature tracking. Mon Weather Rev 127(6):1362–1373CrossRefGoogle Scholar
  27. Hoskins BJ, Valdes PJ (1990) On the existence of storm-tracks. J Atmos Sci 47(15):1854–1864CrossRefGoogle Scholar
  28. Kocin PJ, Schumacher PN, Morales RF Jr, Uccellini LW (1995) Overview of the 12–14 March 1993 superstorm. Bull Am Meteorol Soc 76(2):165–182CrossRefGoogle Scholar
  29. Lambert (1996) Intense extratropical Northern Hemisphere winter cyclone events: 1899–1991. J Geophys Res Atmos (1984–2012) 101(D16):21319–21325Google Scholar
  30. Lambert SJ, Fyfe JC (2006) Changes in winter cyclone frequencies and strengths simulated in enhanced greenhouse warming experiments: results from the models participating in the IPCC diagnostic exercise. Clim Dyn 26(7–8):713–728CrossRefGoogle Scholar
  31. Lehmann J, Coumou D, Frieler K, Eliseev AV, Levermann A (2014) Future changes in extratropical storm tracks and baroclinicity under climate change. Environ Res Lett 9(8):084002CrossRefGoogle Scholar
  32. Li L, Lin P, Yu Y, Wang B, Zhou T, Liu L, Liu J, Bao Q, Xu S, Huang W et al (2013) The flexible global ocean-atmosphere-land system model, Grid-point Version 2: FGOALS-g2. Adv Atmos Sci 30:543–560CrossRefGoogle Scholar
  33. Liberato MLR (2014) The 19 January 2013 windstorm over the North Atlantic: large-scale dynamics and impacts on Iberia. Weather Clim Extrem 5:16–28CrossRefGoogle Scholar
  34. Martin GM, Bellouin N, Collins WJ, Culverwell ID, Halloran PR, Hardiman SC, Hinton TJ, Jones CD, McDonald RE, McLaren AJ, O’Connor FM et al (2011) The HadGEM2 family of met office unified model climate configurations. Geosci Model Dev Discuss 4(2):765–841CrossRefGoogle Scholar
  35. McDonald RE (2011) Understanding the impact of climate change on Northern Hemisphere extra-tropical cyclones. Clim Dyn 37(7–8):1399–1425CrossRefGoogle Scholar
  36. Mizuta R (2012) Intensification of extratropical cyclones associated with the polar jet change in the CMIP5 global warming projections. Geophys Res Lett 39:19CrossRefGoogle Scholar
  37. Pinto JG, Zacharias S, Fink AH, Leckebusch GC, Ulbrich U (2009) Factors contributing to the development of extreme North Atlantic cyclones and their relationship with the NAO. Clim Dyn 32(5):711–737CrossRefGoogle Scholar
  38. R Core Team (2013) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna.
  39. Roebber PJ (1984) Statistical analysis and updated climatology of explosive cyclones. Mon Weather Rev 112(8):1577–1589CrossRefGoogle Scholar
  40. Rudeva I, Gulev SK (2007) Climatology of cyclone size characteristics and their changes during the cyclone life cycle. Mon Weather Rev 135(7):2568–2587CrossRefGoogle Scholar
  41. Sanders F, Gyakum JR (1980) Synoptic-dynamic climatology of the “bomb”. Mon Weather Rev 108(10):1589–1606CrossRefGoogle Scholar
  42. Schneider Tapio, O’Gorman Paul A, Levine Xavier J (2010) Water vapor and the dynamics of climate changes. Rev Geophys 48(3):1–22CrossRefGoogle Scholar
  43. Seierstad IA, Bader J (2009) Impact of a projected future Arctic Sea Ice reduction on extratropical storminess and the NAO. Clim Dyn 33(7–8):937–943CrossRefGoogle Scholar
  44. Seiler C, Zwiers FW (2015) How well do CMIP5 climate models reproduce explosive cyclones in the extratropics of the Northern Hemisphere? Clim Dyn. doi: 10.1007/s00382-015-2642-x Google Scholar
  45. Stull RB (2000) Meteorology for scientists and engineers: a technical companion book with Ahrens’ Meteorology Today. Brooks/ColeGoogle Scholar
  46. Taylor KE, Stouffer RJ, Meehl GA (2012) An overview of CMIP5 and the experiment design. Bull Am Meteorol Soc 93(4):485–498CrossRefGoogle Scholar
  47. Ulbrich U, Pinto JG, Kupfer H, Leckebusch GC, Spangehl T, Reyers M (2008) Changing Northern Hemisphere storm tracks in an ensemble of IPCC climate change simulations. J Clim 21(8):1669–1679CrossRefGoogle Scholar
  48. Uppala SM, Kållberg PW, Simmons AJ, Andrae U, Bechtold V, Fiorino M, Gibson JK, Haseler J, Hernandez A, Kelly GA et al (2005) The ERA-40 re-analysis. Q J R Meteorol Soc 131(612):2961–3012CrossRefGoogle Scholar
  49. Voldoire A, Sanchez-Gomez E, y Mélia DS, Decharme B, Christophe C, Sénési S, Sophie V, Beau I, Alias A, Chevallier M et al (2013) The CNRM-CM5. 1 global climate model: description and basic evaluation. Clim Dyn 40(9–10):2091–2121CrossRefGoogle Scholar
  50. Volodin EM, Dianskii NA, Gusev AV (2010) Simulating present-day climate with the INMCM4. 0 coupled model of the atmospheric and oceanic general circulations. Izv Atmos Ocean Phys 46(4):414–431CrossRefGoogle Scholar
  51. Watanabe S, Hajima T, Sudo K, Nagashima T, Takemura T, Okajima H, Nozawa T, Kawase H, Abe M, Yokohata T et al (2011) MIROC-ESM: model description and basic results of CMIP5-20c3m experiments. Geosci Model Dev Discuss 4:1063–1128CrossRefGoogle Scholar
  52. Weaver AJ, Sedláček J, Eby M, Alexander K, Crespin E, Fichefet T, Philippon-Berthier G, Joos F, Kawamiya M, Matsumoto K et al (2012) Stability of the Atlantic meridional overturning circulation: a model intercomparison. Geophys Res Lett 39(20):1–7CrossRefGoogle Scholar
  53. Willison J, Robinson WA, Lackmann GM (2013) The importance of resolving mesoscale latent heating in the North Atlantic storm track. J Atmos Sci 70(7):2234–2250CrossRefGoogle Scholar
  54. Woollings T, Gregory JM, Pinto JG, Reyers M, Brayshaw DJ (2012) Response of the North Atlantic storm track to climate change shaped by ocean-atmosphere coupling. Nat Geosci 5(5):313–317CrossRefGoogle Scholar
  55. Wu T, Song L, Li W, Wang Z, Zhang H, Xin X, Zhang Y, Zhang L, Li J, Wu F, Liu Y, Zhang F, Shi X, Chu M, Zhang J, Fang Y, Wang F,Lu Y, Liu X, Wei M, Liu Q, Zhou W, Dong M, Zhao Q, Ji J, Zhou M (2014) An overview of BCCclimate system model development and application for climate changestudies. J Meteorol Res 28(1):34–56Google Scholar
  56. Xin X, Zhang L, Zhang J, Wu T, Fang Y (2013) Climate change projections over East Asia with BCC\_CSM1. 1 climate model under RCP scenarios. J Meteorol Soc Jpn 91(4):413–429CrossRefGoogle Scholar
  57. Yukimoto S, Kenkyūjo K (2011) Meteorological Research Institute Earth System Model Version 1 (MRI-ESM1): model description. Meteorol Res Inst Tech Rep 64:83Google Scholar
  58. Yukimoto S, Adachi Y, Hosaka M, Sakami T, Yoshimura H, Hirabara M, Tanaka TY, Shindo E, Tsujino H, Deushi M et al (2012) A new global climate model of the Meteorological Research Institute: MRI-CGCM3—model description and basic performance. J Meteorol Soc Jpn 90:23–64CrossRefGoogle Scholar
  59. Zappa G, Shaffrey LC, Hodges KI, Sansom PG, Stephenson DB (2013) A multimodel assessment of future projections of north atlantic and european extratropical cyclones in the cmip5 climate models*. J Clim 26(16):5846–5862CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  1. 1.Pacific Climate Impacts ConsortiumUniversity of VictoriaVictoriaCanada

Personalised recommendations