Climate Dynamics

, Volume 46, Issue 11–12, pp 3547–3566 | Cite as

Assimilating continental mean temperatures to reconstruct the climate of the late pre-industrial period

  • Anastasios MatsikarisEmail author
  • Martin Widmann
  • Johann Jungclaus


An on-line, ensemble-based data assimilation (DA) method is performed to reconstruct the climate for 1750–1850 AD, and the performance is evaluated on large and small spatial scales. We use a low-resolution version of the Max Planck Institute for Meteorology MPI-ESM model and assimilate the PAGES 2K continental mean temperature reconstructions for the Northern Hemisphere (NH). The ensembles are generated sequentially for sub-periods based on the analysis of previous sub-periods. The assimilation has good skill for large-scale temperatures, but there is no agreement between the DA analysis and proxy-based reconstructions for small-scale temperature patterns within Europe or with reconstructions for the North Atlantic Oscillation (NAO) index. To explain the lack of added value in small spatial scales, a maximum covariance analysis (MCA) of links between NH temperature and sea level pressure is performed based on a control simulation with MPI-ESM. For annual values, winter and spring the Northern Annular Mode (NAM) is the pattern that is most closely linked to the NH continental temperatures, while for summer and autumn it is a wave-like pattern. This link is reproduced in the DA for winter, spring and annual means, providing potential for constraining the NAM/NAO phase and in turn regional temperature variability. It is shown that the lack of actual small-scale skill is likely due to the fact that the link might be too weak, as the NH continental mean temperatures are not the best predictors for large-scale circulation anomalies, or that the PAGES 2K temperatures include noise. Both factors can lead to circulation anomalies in the DA analysis that are substantially different from reality, leading to unrealistic representation of small-scale temperature variability. Moreover, we show that even if the true amplitudes of the leading MCA circulation patterns were known, there is still a large amount of unexplained local temperature variance. Based on these results, we argue that assimilating temperature reconstructions with a higher spatial resolution might improve the DA performance.


Climate of the past Climate modelling Data assimilation PAGES 2K 



A.M. is supported by a NERC studentship, the University of Birmingham and the Max Planck Institute for Meteorology in Hamburg. We would like to thank Helmuth Haak from MPI Hamburg for his support and guidelines on running the model. We are also grateful to the anonymous reviewers, whose comments led to improvements in the paper.


  1. Annan JD, Hargreaves JC (2012) Identification of climatic state with limited proxy data. Clim Past 8:1141–1151CrossRefGoogle Scholar
  2. Bhend J, Franke J, Folini D, Wild M, Broennimann S (2012) An ensemble-based approach to climate reconstructions. Clim Past 8:963–976CrossRefGoogle Scholar
  3. Bretherton CS, Smith C, Wallace JM (1992) An intercomparison of methods for finding coupled patterns in climate data. J Clim 5:541–560CrossRefGoogle Scholar
  4. Cole-Dai J (2010) Volcanoes and climate. Wiley Interdiscip Rev Clim Change 1:824–839. doi: 10.1002/wcc.76 CrossRefGoogle Scholar
  5. Cole-Dai J, Ferris D, Lanciki A, Savarino J, Baroni M, Thiemens MH (2009) Cold decade (AD 1810–1819) caused by Tambora (1815) and another (1809) stratospheric volcanic eruption. Geophys Res Lett. doi: 10.1029/2009gl040882 Google Scholar
  6. Crespin E, Goosse H, Fichefet T, Mann ME (2009) The 15th century Arctic warming in coupled model simulations with data assimilation. Clim Past 5:389–401CrossRefGoogle Scholar
  7. Crowley TJ, Unterman MB (2012) Technical details concerning development of a 1200-yr proxy index for global volcanism. Earth Syst Sci Data Discuss 5:1–28. doi: 10.5194/essdd-5-1-2012 CrossRefGoogle Scholar
  8. Dirren S, Hakim GJ (2005) Toward the assimilation of time-averaged observations. Geophys Res Lett 32:L04 804. doi: 10.1029/2004GL021444 CrossRefGoogle Scholar
  9. Goosse H, Renssen H, Timmermann A, Bradley RS, Mann ME (2006) Using paleoclimate proxy-data to select optimal realisations in an ensemble of simulations of the climate of the past millennium. Clim Dyn 27:165–184CrossRefGoogle Scholar
  10. Goosse H, Crespin E, de Montety A, Mann ME, Renssen H, Timmermann A (2010) Reconstructing surface temperature changes over the past 600 years using climate model simulations with data assimilation. J Geophys Res Atmos 115:D09 108. doi: 10.1029/2009jd012737 CrossRefGoogle Scholar
  11. Goosse H, Crespin E, Dubinkina S, Loutre MF, Mann ME, Renssen H, Sallaz-Damaz Y, Shindell D (2012) The role of forcing and internal dynamics in explaining the “Medieval Climate Anomaly”. Clim Dyn 39:2847–2866CrossRefGoogle Scholar
  12. Hakim GJ, Annan J, Bronnimann S, Crucifix M, Edwards T, Goosse H, Paul A, van der Schrier G, Widmann M (2013) Overview of data assimilation methods. PAGES News 21:72–73Google Scholar
  13. Huntley HS, Hakim GJ (2010) Assimilation of time-averaged observations in a quasi-geostrophic atmospheric jet model. Clim Dyn 35:995–1009CrossRefGoogle Scholar
  14. Jansen E, Overpeck J, Briffa K, Duplessy J-C, Joos F, Masson-Delmotte V, Olago D, Otto-Bliesner B, Peltier W, Rahmstorf S, Ramesh R, Raynaud D, Rind D, Solomina O, Villalba R, Zhang D (2007) Palaeoclimate. In: Solomon S, Qin D, Manning M, Chen Z, Marquis M, Averyt K, Tignor M, Miller H (eds) Climate change 2007: the physical science basis. Contribution of working group 1 to the fourth assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge, pp 433–497Google Scholar
  15. Jones PD, Mann ME (2004) Climate over past millennia. Rev Geophys 42:RG2002. doi: 10.1029/2003RG000143 CrossRefGoogle Scholar
  16. Jones PD, Jonsson T, Wheeler D (1997) Extension to the North Atlantic Oscillation using early instrumental pressure observations from Gibraltar and south-west Iceland. Int J Climatol 17:1433–1450CrossRefGoogle Scholar
  17. Jungclaus JH, Lohmann K, Zanchettin D (2014) Enhanced 20th-century heat transfer to the Arctic simulated in the context of climate variations over the last millennium. Clim Past 10:2201–2213. doi: 10.5194/cp-10-2201-2014 CrossRefGoogle Scholar
  18. Klein F, Goosse H, Mairesse A, de Vernal A (2014) Model-data comparison and data assimilation of mid-Holocene Arctic sea ice concentration. Clim Past 10:1145–1163. doi: 10.5194/cp-10-1145-2014 CrossRefGoogle Scholar
  19. Luterbacher J, Xoplaki E, Dietrich D, Jones PD, Davies TD, Portis D, Gonzalez-Rouco JF, von Storch H, Gyalistras D, Casty C, Wanner H (2002) Extending North Atlantic Oscillation reconstructions back to 1500. Atmos Sci Lett 2:114–124. doi: 10.1006/asle.2001.0044 CrossRefGoogle Scholar
  20. Luterbacher J, Dietrich D, Xoplaki E, Grosjean M, Wanner H (2004) European seasonal and annual temperature variability, trends, and extremes since 1500. Science 303:1499–1503. doi: 10.1126/science.1093877 CrossRefGoogle Scholar
  21. Mairesse A, Goosse H, Mathiot P, Wanner H, Dubinkina S (2013) Investigating the consistency between proxy-based reconstructions and climate models using data assimilation: a mid-Holocene case study. Clim Past 9:2741–2757. doi: 10.5194/cp-9-2741-2013 CrossRefGoogle Scholar
  22. Mann ME, Zhang ZH, Rutherford S, Bradley RS, Hughes MK, Shindell D, Ammann C, Faluvegi G, Ni FB (2009) Global signatures and dynamical origins of the little ice age and medieval climate anomaly. Science 326:1256–1260, iSI Document Delivery No.: 524BDGoogle Scholar
  23. Marsland SJ, Haak H, Jungclaus JH, Latif M, Roske F (2003) The Max-Planck-Institute global ocean/sea ice model with orthogonal curvilinear coordinates. Ocean Model 5:91–127. doi: 10.1016/s1463-5003(02)00015-x CrossRefGoogle Scholar
  24. Matsikaris A, Widmann M, Jungclaus J (2015) On-line and off-line data assimilation in palaeoclimatology: a case study. Clim Past 11:81–93. doi: 10.5194/cp-11-81-2015 CrossRefGoogle Scholar
  25. Moberg A, Sonechkin DM, Holmgren K, Datsenko NM, Karlen W, Lauritzen SE (2005) Highly variable Northern Hemisphere temperatures reconstructed from low- and high-resolution proxy data (vol 433, pg 613, 2005). Nature 439:1014. doi: 10.1038/nature04575 CrossRefGoogle Scholar
  26. Oppenheimer C (2003) Climatic, environmental and human consequences of the largest known historic eruption: Tambora volcano (Indonesia) 1815. Prog Phys Geogr 27:230–259. doi: 10.1191/0309133303pp379ra CrossRefGoogle Scholar
  27. PAGES 2K Consortium (2013) Continental-scale temperature variability during the past two millennia. Nat Geosci 6:339–346CrossRefGoogle Scholar
  28. Pendergrass AG, Hakim GJ, Battisti DS, Roe G (2012) Coupled air-mixed layer temperature predictability for climate reconstruction. J Clim 25:459–472CrossRefGoogle Scholar
  29. Pongratz J, Reick C, Raddatz T, Claussen M (2008) A reconstruction of global agricultural areas and land cover for the last millennium. Glob Biogeochem Cycles 22:Gb3018. doi: 10.1029/2007gb003153 CrossRefGoogle Scholar
  30. Raddatz TJ, Reick CH, Knorr W, Kattge J, Roeckner E, Schnur R, Schnitzler KG, Wetzel P, Jungclaus J (2007) Will the tropical land biosphere dominate the climate-carbon cycle feedback during the twenty-first century? Clim Dyn 29:565–574. doi: 10.1007/s00382-007-0247-8 CrossRefGoogle Scholar
  31. Robock A (2000) Volcanic eruptions and climate. Rev Geophys 38:191–219. doi: 10.1029/1998rg000054 CrossRefGoogle Scholar
  32. Rohde R, Muller R, Jacobsen R, Muller E, Perlmutter S, Rosenfeld A, Wurtele J, Groom D, Wickham C (2012) A new estimate of the average earth surface land temperature spanning 1753 to 2011. Geoinform Geostat Overv 1:1. doi: 10.4172/2327-4581.1000101 Google Scholar
  33. Schmidt GA, Jungclaus JH, Ammann CM, Bard E, Braconnot P, Crowley TJ, Delaygue G, Joos F, Krivova NA, Muscheler R, Otto-Bliesner BL, Pongratz J, Shindell DT, Solanki SK, Steinhilber F, Vieira LEA (2011) Climate forcing reconstructions for use in PMIP simulations of the last millennium (v1.0). Geosci Model Dev 4:33–45. doi: 10.5194/gmd-4-33-2011 CrossRefGoogle Scholar
  34. Steiger NJ, Hakim GJ, Steig EJ, Battisti DS, Roe GH (2014) Assimilation of time-averaged pseudoproxies for climate reconstruction. J Clim 27:426–441. doi: 10.1175/jcli-d-12-00693.1 CrossRefGoogle Scholar
  35. Stevens B, Giorgetta M, Esch M, Mauritsen T, Crueger T, Rast S, Salzmann M, Schmidt H, Bader J, Block K, Brokopf R, Fast I, Kinne S, Kornblueh L, Lohmann U, Pincus R, Reichler T, Roeckner E (2013) Atmospheric component of the Earth System Model: ECHAM6. J Adv Model Earth Syst 5:146–172. doi: 10.1002/jame.20015 CrossRefGoogle Scholar
  36. van der Schrier G, Barkmeijer J (2005) Bjerknes’ hypothesis on the coldness during AD 1790–1820 revisited. Clim Dyn 25:537–553. doi: 10.1007/s00382-005-0053-0 CrossRefGoogle Scholar
  37. Vieira LEA, Solanki SK, Krivova NA, Usoskin I (2011) Evolution of the solar irradiance during the Holocene. Astron Astrophys 531:A6. doi: 10.1051/0004-6361/201015843 CrossRefGoogle Scholar
  38. Widmann M (2005) One-dimensional CCA and SVD, and their relationship to regression maps. J Clim 18:2785–2792. doi: 10.1175/jcli3424.1 CrossRefGoogle Scholar
  39. Widmann M, Goosse H, van der Schrier G, Schnur R, Barkmeijer J (2010) Using data assimilation to study extratropical Northern Hemisphere climate over the last millennium. Clim Past 6:627–644CrossRefGoogle Scholar
  40. Zanchettin D, Timmreck C, Graf HF, Rubino A, Lorenz S, Lohmann K, Kruger K, Jungclaus J (2012) Bi-decadal variability excited in the coupled ocean–atmosphere system by strong tropical volcanic eruptions. Clim Dyn 39:419–444, iSI Document Delivery No.: 965CZ5Google Scholar
  41. Zanchettin D, Timmreck C, Bothe O, Lorenz SJ, Hegerl G, Graf HF, Luterbacher J, Jungclaus JH (2013) Delayed winter warming: a robust decadal response to strong tropical volcanic eruptions? Geophys Res Lett 40:204–209. doi: 10.1029/2012gl054403 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • Anastasios Matsikaris
    • 1
    • 2
    Email author
  • Martin Widmann
    • 1
  • Johann Jungclaus
    • 2
  1. 1.University of BirminghamEdgbaston, BirminghamUK
  2. 2.Max-Planck-Institute for MeteorologyHamburgGermany

Personalised recommendations