Advertisement

Climate Dynamics

, Volume 46, Issue 11–12, pp 3463–3480 | Cite as

Competition between ocean carbon pumps in simulations with varying Southern Hemisphere westerly wind forcing

  • W. N. Huiskamp
  • K. J. Meissner
  • M. d’Orgeville
Article

Abstract

We analyse the impact of migration and strength of Southern Hemisphere westerly winds on the ocean carbon cycle in a systematic sensitivity study with the University of Victoria Earth System Climate Model. We find that changes in the biological pump are mainly driven by changes in ocean residence times while changes in export production are negligible. Changes in the biological and physical pumps are always of opposite sign; with the physical pump being dominant for southward shifts and the biological pump being dominant for northward shifts. Furthermore, changes in the Pacific Ocean carbon budget dictate the overall changes in global marine and atmospheric carbon. Overall, atmospheric \(\hbox {CO}_2\) increases (and \(\Delta ^{14}\hbox {C}\) decreases) for northward shifts or a strengthening in wind forcing. The opposite is true for a southward shift or a weakening in wind forcing. Combining forcings (shift and intensity change) results in a combination of their impacts with the direction of the shift being the first order forcing. The terrestrial carbon reservoir absorbs (releases) 50–70 % of the net oceanic carbon loss (increase), counterbalancing the effect on atmospheric \(\hbox {CO}_2\).

Keywords

Carbon cycle Southern Hemisphere westerlies Southern annular mode Ocean dynamics Preformed and remineralized DIC 

Notes

Acknowledgments

The authors would like to thank Matthew England, Chris Turney and Paul Valdes for comments on earlier drafts of this manuscript. The work was supported by the Australian Research Council (FT100100443, DP130104156). KJM is grateful for an award under the Merit Allocation Scheme on the NCI National Facility at the ANU. The authors declare that they have no conflict of interest.

References

  1. Archer D (1996) A data-driven model of the global calcite lysocline. Global Biogeochem Cycles 10(3):511–526CrossRefGoogle Scholar
  2. Berger AL (1978) Long-term variations of daily insolation and quaternary climatic changes. J Atmos Sci 35:2362–2367CrossRefGoogle Scholar
  3. Biastoch A, Böning CW, Schwarzkopf FU, Lutjeharms JRE (2009) Increase in Agulhas leakage due to poleward shift of Southern Hemisphere westerlies. Nature 462:495–498. doi: 10.1038/nature08519 CrossRefGoogle Scholar
  4. Bryan K, Lewis LJ (1979) A water mass model of the World Ocean. J Geophys Res Oceans 84(C5):2503–2517. doi: 10.1029/JC084iC05p02503 CrossRefGoogle Scholar
  5. Chen G, Millero FJ (1979) Gradual increase of oceanic CO\(_2\). Nature 277:205–206CrossRefGoogle Scholar
  6. Delworth TL, Zeng F (2008) Simulated impact of altered Southern Hemisphere winds on the Atlantic meridional overturning circulation. Geophys Res Lett 35(20). doi: 10.1029/2008GL035166
  7. d’Orgeville M, Sijp WP, England MH, Meissner KJ (2010) On the control of glacial-interglacial atmospheric CO\(_2\) variations by the Southern Hemisphere westerlies. Geophys Res Lett 37(21):1–5Google Scholar
  8. Doval M, Hansell DA (2000) Organic carbon and apparent oxygen utilization in the western South Pacific and the central Indian Oceans. Mar Chem 68(3):249–264. doi: 10.1016/S0304-4203(99)00081-X. http://www.sciencedirect.com/science/article/pii/S03044203990 0081X
  9. Eby M, Zickfeld K, Montenegro A, Archer D, Meissner KJ, Weaver AJ (2009) Lifetime of anthropogenic climate change: millennial time-scales of potential CO\(_2\) and surface temperature perturbations. J Clim 22:2501–2511. doi: 10.1175/2008JCLI2554.1 CrossRefGoogle Scholar
  10. Gent P, McWilliams J (1990) Isopycnal mixing in ocean circulation models. J Phys Oceanogr 20:150–155CrossRefGoogle Scholar
  11. Hibler III WD (1979) A dynamic thermodynamic sea ice model. J. Phys. Oceanogr. 9(4):815–846. http://journals.ametsoc.org/doi/abs/10.1175/1520-0485(1979)00%9%3C0815%3AADTSIM%3E2.0.CO%3B2Google Scholar
  12. Huiskamp WN, Meissner KJ (2012) Oceanic carbon and water masses during the mystery interval: A model-data comparison study. Paleoceanography 27:PA4206. doi: 10.1029/2012PA002368 CrossRefGoogle Scholar
  13. Hunke EC, Dukowicz JK (1997) An elastic-viscous-plastic model for sea ice dynamics. J Phys Oceanogr 27(9):1849–1867CrossRefGoogle Scholar
  14. Ito T, Follows M (2005) Preformed phosphate, soft tissue pump and atmospheric CO\(_2\). J Mar Res 63:813–839. doi: 10.1357/0022240054663231 CrossRefGoogle Scholar
  15. Kalnay E, Kanamitsu M, Kistler R, Collins W, Deaven D, Gandin L, Iredell M, Saha S, White G, Woollen J, Zhu Y, Chelliah M, Ebisuzaki W, Higgins W, Janowiak J, Mo KC, Ropelewski C, Wang J, Leetma A, Reynolds R, Jenne R, Joseph D (1996) The NCEP/NCAR 40-year reanalysis project. Bull Am Meteorol Soc 77(3):437–471CrossRefGoogle Scholar
  16. Lauderdale JM, Garabato ACN, Oliver KI, Follows MJ, Williams RG (2013) Wind-driven changes in Southern Ocean residual circulation, ocean carbon reservoirs and atmospheric CO\(_2\). Clim Dyn 41(7–8):2145–2164. doi: 10.1007/s00382-012-1650-3 CrossRefGoogle Scholar
  17. Lee S, Feldstein SB (2013) Detecting ozone- and greenhouse gas-driven wind trends with observational data. Science 339(6119):563–567. doi: 10.1126/science.1225154. http://www.sciencemag.org/content/339/6119/563.full.pdf
  18. Lovenduski NS, Ito T (2009) The future evolution of the Southern Ocean CO\(_2\) sink. J Mar Res 67(5):597–617. doi: 10.1357/002224009791218832 CrossRefGoogle Scholar
  19. Lovenduski NS, Gruber N, Doney SC, Lima ID (2007) Enhanced CO\(_2\) outgassing in the Southern Ocean from a positive phase of the Southern Annular Mode. Global Biogeochem Cycles 21(2): gB2026. doi: 10.1029/2006GB002900
  20. Marinov I, Gnanadesikan A, Toggweiler JR, Sarmiento JL (2006) The Southern Ocean biogeochemical divide. Nature 441:964–967. doi: 10.1038/nature04883 CrossRefGoogle Scholar
  21. Marshall J, Speer K (2012) Closure of the meridional overturning circulation through Southern Ocean upwelling. Nat Geosci 5(3):171–180CrossRefGoogle Scholar
  22. McDermott DA (1996) The regulation of northern overturning by Southern Hemisphere winds. J Phys Oceanogr 26(7):1234–1255. doi: 10.1175/1520-0485(1996)026<1234:TRONOB>2.0.CO;2
  23. Meissner K, Weaver A, Matthews H, Cox P (2003a) The role of land surface dynamics in glacial inception: a study with the UVic earth system model. Clim Dyn 21(7–8):515–537. doi: 10.1007/s00382-003-0352-2 CrossRefGoogle Scholar
  24. Meissner KJ (2007) The Younger Dryas: a data to model comparison to constrain the strength of the overturning circulation. Geophys Res Lett 34(L21):705Google Scholar
  25. Meissner KJ, Schmittner A, Weaver AJ, Adkins JF (2003b) Ventilation of the North Atlantic Ocean during the Last Glacial Maximum: a comparison between simulated and observed radiocarbon ages. Paleoceanography 18(2). doi: 10.1029/2002PA000762
  26. Meissner KJ, McNeil BI, Eby M, Wiebe EC (2012) The importance of the terrestrial weathering feedback for multimillennial coral reef habitat recovery. Global Biogeochem Cycles 26(3):GB3017. doi: 10.1029/2011GB004098 CrossRefGoogle Scholar
  27. Menviel L, Timmermann A, Mouchet A, Timm O (2008) Climate and marine carbon cycle response to changes in the strength of the Southern Hemispheric westerlies. Paleoceanography 23(4). doi: 10.1029/2008PA001604
  28. Menviel L, England MH, Meissner KJ, Mouchet A, Yu J (2014) Atlantic-Pacific seesaw and its role in outgassing CO\(_2\) during Heinrich events. Paleoceanography 29(1):58–70. doi: 10.1002/2013PA002542 CrossRefGoogle Scholar
  29. Munday DR, Johnson HL, Marshall DP (2014) Impacts and effects of mesoscale ocean eddies on ocean carbon storage and atmospheric pCO\(_2\). Global Biogeochem Cycles 28(8):877–896. doi: 10.1002/2014GB004836 CrossRefGoogle Scholar
  30. Pacanowski RC (1995) MOM 2 documentation, user’s guide and reference manual. In: Technical Report 3, GFDL Ocean Group, Geophysical Fluid Dynamics Laboratory, Princeton, USAGoogle Scholar
  31. Previdi M, Polvani LM (2014) Climate system response to stratospheric ozone depletion and recovery. Q J R Meteorol Soc. doi: 10.1002/qj.2330
  32. Rahmstorf S, England MH (1997) Influence of Southern Hemisphere winds on North Atlantic deep water flow. J Phys Oceanogr 27(9):2040–2054CrossRefGoogle Scholar
  33. Russell JL, Dixon KW, Gnanadesikan A, Stouffer RJ, Toggweiler JR (2006) The southern hemisphere westerlies in a warming world: propping open the door to the deep ocean. J Clim 19(24):6382–6390. doi: 10.1175/JCLI3984.1 CrossRefGoogle Scholar
  34. Saenko OA, Weaver AJ, Schmittner A (2003) Atlantic deep circulation controlled by freshening in the Southern Ocean. Geophys Res Lett 30(14). doi:10.1029/2003GL017681Google Scholar
  35. Sarmiento JL, Gruber N, Brzezinski MA, Dunne JP (2004) High-latitude controls of thermocline nutrients and low latitude biological productivity. Nature 427:56–60. doi: 10.1038/nature02127 CrossRefGoogle Scholar
  36. Sasse TP, McNeil BI, Abramowitz G (2013) A new constraint on global air–sea CO\(_2\) fluxes using bottle carbon data. Geophys Res Lett 40(8):1594–1599. doi: 10.1002/grl.50342 CrossRefGoogle Scholar
  37. Schartau M, Oschlies A (2003) Simultaneous data-based optimization of a 1D-ecosystem model at three locations in the North Atlantic Ocean: Part 2. Standing stocks and nitrogen fluxes. J Mar Res 61(6):795–821Google Scholar
  38. Schmittner A, Oschlies A, Matthews HD, Galbraith ED (2008) Future changes in climate, ocean circulation, ecosystems, and biogeochemical cycling simulated for a business-as-usual CO\(_2\) emission scenario until year 4000 AD. Global Biogeochem Cycles 22(1):GB1013CrossRefGoogle Scholar
  39. Schmittner A, Gruber N, Mix AC, Key RM, Tagliabue A, Westberry TK (2013) Biology and air–sea gas exchange controls on the distribution of carbon isotope ratios (\(\delta ^{13}{\text{ C }}\)) in the ocean. Biogeosciences 10:5793–5816. doi: 10.5194/bg-10-5793-2013 CrossRefGoogle Scholar
  40. Semtner AJJ (1976) A model for the thermodynamic growth of sea ice in numerical investigations of climate. J Phys Oceanogr 6(3):379–389CrossRefGoogle Scholar
  41. Sijp WP, England MH (2008) The effect of a northward shift in the southern hemisphere westerlies on the global ocean. Prog Oceanogr 79:1–19CrossRefGoogle Scholar
  42. Sijp WP, England MH (2009) Southern hemisphere westerly wind control over the ocean’s thermohaline circulation. J Clim 22(5):1277–1286CrossRefGoogle Scholar
  43. Skinner LC, Fallon S, Waelbroeck C, Michel E, Barker S (2010) Ventilation of the deep Southern Ocean and deglacial CO\(_2\) rise. Science 328(5982):1147–1151CrossRefGoogle Scholar
  44. Son SW, Polvani LM, Waugh DW, Akiyoshi H, Garcia R, Kinnison D, Pawson S, Rozanov E, Shepherd TG, Shibata K (2008) The impact of stratospheric ozone recovery on the southern hemisphere westerly jet. Science 320(5882):1486–1489. doi: 10.1126/science.1155939. http://www.sciencemag.org/content/320/5882/1486.full.pdf
  45. Stuiver M, Polach HA (1977) Discussion: reporting of 14C data. Radiocarbon 19(3):355–363. http://www.radiocarbon.org/Pubs/Stuiver/Stuiver-Polach.pdf
  46. Swart NC, Fyfe JC, Saenko OA, Eby M (2014) Wind-driven changes in the ocean carbon sink. Biogeosciences 11(21):6107–6117. doi: 10.5194/bg-11-6107-2014. http://www.biogeosciences.net/11/6107/2014/
  47. Takahashi T, Sweeney C, Hales B, Chipman D, Newberger T, Goddard J, Iannuzzi R, Sutherland S (2012) The changing carbon cycle in the Southern Ocean. Oceanography 25(3):26–37. doi: 10.5670/oceanog.2012.71 CrossRefGoogle Scholar
  48. Toggweiler J, Samuels B (1995) Effect of Drake passage on the global thermohaline circulation. Deep Sea Res Part I Oceanogr Res Pap 42(4):477–500. doi: 10.1016/0967-0637(95)00012-U. http://www.sciencedirect.com/science/article/pii/096706379500
  49. Toggweiler JR, Russell JL, Carson SR (2006) Midlatitude westerlies, atmospheric CO\(_2\), and climate change during the ice ages. Paleoceanography 21(2):PA001,154CrossRefGoogle Scholar
  50. Tschumi T, Joos F, Parekh P (2008) How important are Southern Hemisphere wind changes for low glacial carbon dioxide? A model study. Paleoceanography 23(4). doi: 10.1029/2008PA001592
  51. Völker C, Köhler P (2013) Responses of ocean circulation and carbon cycle to changes in the position of the Southern Hemisphere westerlies at Last Glacial Maximum. Paleoceanography 28(4):726–739. doi: 10.1002/2013PA002556 CrossRefGoogle Scholar
  52. Weaver A, Hughes TMC (1992) Stability and variability of the thermohaline circulation and its link to climate. In: Jacob A (ed) Trends in physical oceanography. Research Trends Series, vol 1. Council of Scientific Research Integration, Trivandrum, India, pp 15–70Google Scholar
  53. Weaver AJ, Eby M, Wiebe EC, Bitz CM, Duffy PB, Ewen TL, Fanning AF, Holland MM, MacFadyen A, Matthews HD, Meissner KJ, Saenko O, Schmittner A, Wang H, Yoshimori M (2001) The UVic earth system climate model: model description, climatology, and applications to past, present and future climates. Atmos Ocean 4:361–428CrossRefGoogle Scholar
  54. Zickfeld K, Fyfe JC, Saenko OA, Eby M, Weaver AJ (2007) Response of the global carbon cycle to human-induced changes in southern hemisphere winds. Geophys Res Lett 34(12). doi: 10.1029/2006GL028797

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • W. N. Huiskamp
    • 1
    • 2
  • K. J. Meissner
    • 1
    • 2
  • M. d’Orgeville
    • 3
  1. 1.Climate Change Research CentreUNSW AustraliaSydneyAustralia
  2. 2.ARC Centre of Excellence for Climate System ScienceUNSW AustraliaSydneyAustralia
  3. 3.Department of PhysicsUniversity of TorontoTorontoCanada

Personalised recommendations