Skip to main content

Advertisement

Log in

Can the Tibetan Plateau snow cover influence the interannual variations of Eurasian heat wave frequency?

  • Published:
Climate Dynamics Aims and scope Submit manuscript

Abstract

The Eurasian continent has experienced significant year-to-year variations of summer heat waves during the past decades. Several possible factors, such as ocean temperature, soil moisture, and changes in land use and greenhouse gases, have been identified in previous studies, but the mechanisms are still unclear. In this study, it is found that the Tibetan Plateau snow cover (TPSC) is closely linked to the interannual variations of summer heat waves over Eurasia. The TPSC variability explains more than 30 % of the total variances of heat wave variability in the southern Europe and northeastern Asia (SENA) region. A set of numerical experiments reveal that the reduced TPSC may induce a distinct teleconnection pattern across the Eurasian continent, with two anomalous high pressure centers in the upper troposphere over the SENA region, which may lead to a reduction of the cloud formation near the surface. The less cloud cover tends to increase the net shortwave radiation and favor a stronger surface sensible heat flux in the dry surface condition over the SENA region, resulting in a deeper, warmer and drier atmospheric boundary layer that would further inhibit the local cloud formation. Such a positive land–atmosphere feedback may dry the surface even further, heat the near-surface atmosphere and thereby intensify the local heat waves. The above dynamical processes also operate on interdecadal time scales. Given the reduction of the TPSC could become more pronounced with increasing levels of greenhouse gases in a warming climate, we infer that the TPSC may play an increasingly important role in shaping the summer heat waves over the SENA region in next decades.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  • Alexander L (2010) Extreme heat rooted in dry soils. Nat Geosci 3:1–2

    Google Scholar 

  • Barnett TP, Dümenil L, Schlese U, Roeckner E (1988) The effect of Eurasian snow cover on global climate. Science 239(4839):504–507

    Article  Google Scholar 

  • Barriopedro D, Fischer EM, Luterbacher J, Trigo RM, Garcia-Herrera RG (2011) The hot summer of 2010: redrawing the temperature record map of Europe. Science 332:220–224

    Article  Google Scholar 

  • Bretherton CS, Widmann M, Dymnikov VP, Wallace JM, Blade I (1999) Effective number of degrees of freedom of a spatial field. J Clim 12:1990–2009

    Article  Google Scholar 

  • Caesar J, Alexander L, Vose R (2006) Large-scale changes in observed daily maximum and minimum temperatures: creation and analysis of a new gridded dataset. J Geophys Res 111:D05101. doi:10.1029/2005JD006280

    Article  Google Scholar 

  • Clark MP, Serreze MC (2000) Effects of variations in East Asian snow cover on modulating atmospheric circulation over the North Pacific Ocean. J Clim 13:3700–3710

    Article  Google Scholar 

  • Compo GP, Whitaker JS, Sardeshmukh PD (2006) Feasibility of a 100 year reanalysis using only surface pressure data. Bull Am Meteorol Soc 87:175–190

    Article  Google Scholar 

  • Compo GP, Whitaker JS, Sardeshmukh PD, Matsui N, Allan RJ, Yin X, Gleason BE, Vose RS, Rutledge G, Bessemoulin P, Brönnimann S, Brunet M, Crouthamel RI, Grant AN, Groisman PY, Jones PD, Kruk M, Kruger AC, Marshall GJ, Maugeri M, Mok HY, Nordli Ø, Ross TF, Trigo RM, Wang XL, Woodruff SD, Worley SJ (2011) The twentieth century reanalysis project. Q J R Meteorol Soc 137:1–28

    Article  Google Scholar 

  • D’Ippoliti D, Michelozzi P, Marino C et al (2010) The impact of heat waves on mortality in 9 European cities: results from the EuroHEAT project. Environ Health 9:37

    Article  Google Scholar 

  • Ding QH, Wang B (2005) Circumglobal teleconnection in the Northern Hemisphere summer. J Clim 18:3483–3505

    Article  Google Scholar 

  • Ding YH, Ren GY, Zhao ZC, Xu Y, Luo Y, Li QP, Zhang J (2007) Detection, causes and projection of climate change over China: an overview of recent progresses. Adv Atmos Sci 24(6):954–971

    Article  Google Scholar 

  • Duan AM, Wu GX (2008) Weakening trend in the atmospheric heat source over the Tibetan Plateau during recent decades. Part I: observations. J Clim 21:3149–3164

    Article  Google Scholar 

  • Duan AM, Wu GX (2009) Weakening trend in the atmospheric heat source over the Tibetan Plateau during recent decades. J Clim 22:4197–4212

    Article  Google Scholar 

  • Fischer EM, Schär C (2010) Consistent geographical patterns of changes in high-impact European heatwaves. Nat Geosci 3:398–403

    Article  Google Scholar 

  • Fischer EM, Seneviratne SI, Vidale PL, Lüthi D, Schär C (2007) Soil moisture–atmosphere interactions during the 2003 European summer heat wave. J Clim 20:5081–5099

    Article  Google Scholar 

  • Fletcher CG, Hardiman SC, Kushner PJ, Cohen J (2009) The dynamical response to snow cover perturbations in a large ensemble of atmospheric GCM integrations. J Clim 22:1208–1222

    Article  Google Scholar 

  • Fu CB (2003) Potential impacts of human-induced land cover change on East Asia monsoon. Glob Planet Change 37:219–229

    Google Scholar 

  • Gong G, Entekhabi D, Cohen J (2002) A large-ensemble model study of the wintertime AO/NAO and the role of interannual snow perturbations. J Clim 15:3488–3499

    Article  Google Scholar 

  • Gong G, Entekhabi D, Cohen J (2003) Relative impacts of Siberian and North American snow anomalies on the winter Arctic Oscillation. Geophys Res Lett 30(16):1848. doi:10.1029/2003GL017749

    Article  Google Scholar 

  • Gong G, Entekhabi D, Cohen J, Robinson D (2004) Sensitivity of atmospheric response to modeled snow anomaly characteristics. J Geophys Res 109:D06107. doi:10.1029/2003JD004160

    Article  Google Scholar 

  • Hall NMJ (2000) A simple GCM based on dry dynamics and constant forcing. J Atmos Sci 57:1557–1572

    Article  Google Scholar 

  • Hall NMJ, Derome J (2000) Transients, nonlinearity, and eddy feedback in the remote response to El Niño. J Atmos Sci 57:3992–4007

    Article  Google Scholar 

  • Hirschi M, Seneviratne SI, Alexandrov V, Boberg F, Boroneant C, Christensen OB, Formayer H, Orlowsky B, Stepanek P (2010) Observational evidence for soil-moisture impact on hot extremes in southeastern Europe. Nat Geosci. doi:10.1038/NGEO1032

    Google Scholar 

  • Lin H (2009) Global extratropical response to diabatic heating variability of the Asian summer monsoon. J Atmos Sci 66:2693–2713

    Article  Google Scholar 

  • Lin H, Wu ZW (2011) Contribution of the autumn Tibetan Plateau snow cover to seasonal prediction of North American winter temperature. J Clim 24:2801–2813

    Article  Google Scholar 

  • Lin H, Wu ZW (2012a) Contribution of Tibetan Plateau snow cover to the extreme winter conditions of 2009/10. Atmos Ocean 50(1):86–94

    Article  Google Scholar 

  • Lin H, Wu ZW (2012b) Indian summer monsoon influence on the climate in the North Atlantic-European region. Clim Dyn 39:303–311

    Article  Google Scholar 

  • Livezey RE, Chen WY (1983) Statistical field significance and its determination by Monte Carlo techniques. Mon Weather Rev 111:46–59

    Article  Google Scholar 

  • Luo HB, Yanai M (1984) The large-scale circulation and heat sources over the Tibetan Plateau and surrounding areas during the early summer of 1979. Part II: heat and moisture budgets. Mon Weather Rev 112:966–989

    Article  Google Scholar 

  • Meehl GA, Tebaldi C (2004) More intense, more frequent, and longer lasting heat waves in the 21st century. Science 305(5686):994–997

    Article  Google Scholar 

  • Meehl GA et al (2007) Global climate projections. In: Solomon S et al (eds) Climate change 2007: the physical science basis: fourth assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge

    Google Scholar 

  • Meehl GA et al (2009) Decadal prediction. Bull Am Meteorol Soc 90:1467–1485

    Article  Google Scholar 

  • North GR, Bell TL, Cahalan RF, Moeng FJ (1982) Sampling errors in the estimation of empirical orthogonal functions. Mon Weather Rev 110:699–706

    Article  Google Scholar 

  • Perkins SE, Alexander LV (2013) On the measurement of heat waves. J Clim 26:4500–4517

    Article  Google Scholar 

  • Pu ZX, Xu L, Salomonson VV (2007) MODIS/Terra observed seasonal variations of snow cover over the Tibetan Plateau. Geophys Res Lett 34:L06706. doi:10.1029/2007GL029262

    Google Scholar 

  • Qiu J (2014) Tibetan plateau gets wired up for monsoon prediction. Nature 514:16–17

    Article  Google Scholar 

  • Robinson DA, Frei A (2000) Seasonal variability of Northern Hemisphere snow extent using visible satellite data. Prof Geogr 51:307–314

    Article  Google Scholar 

  • Robinson DA, Dewey KF, Heim R (1993) Global snow cover monitoring: an update. Bull Am Meteorol Soc 74:1689–1696

    Article  Google Scholar 

  • Shaman J, Tziperman E (2005) The effect of ENSO on Tibetan Plateau snow depth: a stationary wave teleconnection mechanism and implications for the South Asian monsoons. J Clim 18:2067–2079

    Article  Google Scholar 

  • Sobolowski S, Gong G, Ting M (2010) Modeled climate state and dynamic responses to anomalous North American snow cover. J Clim 23:785–799

    Article  Google Scholar 

  • Sutton RT, Hodson DL (2005) Atlantic ocean forcing of North American and European summer climate. Science 309:115–118

    Article  Google Scholar 

  • Trenberth KE (1984) Some effects of finite sample size and persistence on meteorological statistics. Part I: auto-correlations. Mon Weather Rev 112:2359–2368

    Article  Google Scholar 

  • Trenberth KE, Jones PD, Ambenje P, Bojariu R, Easterling D, Klein Tank A, Parker D, Rahimzadeh F, Renwick JA, Rusticucci M, Soden B, Zhai P (2007) Observations: surface and atmospheric climate change. In: Solomon S, Qin D, Manning M, Chen Z, Marquis M, Averyt KB, Tignor M, Miller HL (eds) Climate change 2007: the physical science basis. Contribution of working group 1 to the fourth assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge

  • Wang B, Ding Q (2006) Changes in global monsoon precipitation over the past 56 years. Geophys Res Lett 33:L06711. doi:10.1029/2005GL025347

    Google Scholar 

  • Wang B, Bao Q, Hoskins B, Wu GX, Liu YM (2008) Tibetan Plateau warming and precipitation change in East Asia. Geophys Res Lett 35:L14702. doi:10.1029/2008GL034330

    Article  Google Scholar 

  • Whitaker JS, Compo GP, Wei X, Hamill TM (2004) Reanalysis without radiosondes using ensemble data assimilation. Mon Weather Rev 132:1190–1200

    Article  Google Scholar 

  • Wu GX, Zhang YS (1998) Tibetan Plateau forcing and the timing of the monsoon onset over South Asia and the South China Sea. Mon Weather Rev 126:913–927

    Article  Google Scholar 

  • Wu ZW, Wang B, Li JP, Jin FF (2009) An empirical seasonal prediction model of the East Asian summer monsoon using ENSO and NAO. J Geophys Res 114:D18120. doi:10.1029/2009JD011733

    Article  Google Scholar 

  • Wu ZW, Jiang ZH, Li JP, Zhong SS, Wang LJ (2012a) Possible association of the western Tibetan Plateau snow cover with the decadal to interdecadal variations of Northern China heatwave frequency. Clim Dyn 39:2393–2402

    Article  Google Scholar 

  • Wu ZW, Li JP, Jiang ZH, Ma TT (2012b) Modulation of the Tibetan Plateau snow cover on the ENSO teleconnections: from the East Asian summer monsoon perspective. J Clim 25:2481–2489

    Article  Google Scholar 

  • Wu ZW, Li JP, Jiang ZH, He JH, Zhu XY (2012c) Possible effects of the North Atlantic Oscillation on the strengthening relationship between the East Asian summer monsoon and ENSO. Int J Climatol 32:794–800

    Article  Google Scholar 

  • Wu ZW, Lin H, Li JP, Jiang ZH, Ma TT (2012d) Heat wave frequency variability over North America: two distinct leading modes. J Geophys Res 117:D02102. doi:10.1029/2011JD016908

    Google Scholar 

  • Zhai PM, Sun AJ, Ren FM, Liu XN, Gao B, Zhang Q (1999) Changes of climate extremes in China. Clim Change 42:203–218

    Article  Google Scholar 

  • Zhang YS, Li T, Wang B (2004) Decadal change of snow depth over the Tibetan Plateau in spring: the associated circulation and its relationship to the East Asian summer monsoon rainfall. J Clim 17:2780–2793

    Article  Google Scholar 

  • Zhong SS, Wu ZW, He JH (2013) Comparisons of the thermal effects of the Tibetan Plateau with NCEP-I and ERA-40 reanalysis data. Atmos Ocean 51(1):75–87

    Article  Google Scholar 

Download references

Acknowledgments

We appreciate the Global Snow Lab (Rutgers University) for providing the snow cover data (http://climate.rutgers.edu/snowcover). Zhiwei Wu is jointly supported by the National Natural Science Foundation of China (Grant Nos. 91437216 and 41375089), the Ministry of Science and Technology of China (Grant Nos. 2015CB453201 and 2015CB953904) and the “Qinglan” Project of Jiangsu Province. This is publication No. 0059 of the Earth System Modeling Center (ESMC).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhiwei Wu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, Z., Zhang, P., Chen, H. et al. Can the Tibetan Plateau snow cover influence the interannual variations of Eurasian heat wave frequency?. Clim Dyn 46, 3405–3417 (2016). https://doi.org/10.1007/s00382-015-2775-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00382-015-2775-y

Keywords

Navigation