Advertisement

Climate Dynamics

, Volume 46, Issue 9–10, pp 3323–3336 | Cite as

Centennial-scale teleconnection between North Atlantic sea surface temperatures and the Indian summer monsoon during the Holocene

  • Xiaojian Zhang
  • Liya Jin
  • Wanna Jia
Article

Abstract

Proxy records have shown that abrupt changes in the Indian summer monsoon (ISM) are closely linked to cold events in the North Atlantic at centennial timescales during the Holocene. However, mechanisms for these co-occurring phenomena are not fully understood. This study uses simulation results from a coupled atmosphere–ocean–sea-ice general circulation model forced by astronomical variations to investigate how summer (June, July, August and September) North Atlantic sea surface temperatures (SSTs) may have influenced the ISM at centennial timescales during the Holocene (9.5–0 ka BP). Our analyses identified an intimate relationship between the North Atlantic tripole SST (NATS) mode and the ISM. The NATS mode can affect the ISM in several ways. First, air–sea interactions over the tropical Atlantic can induce negative tropospheric temperature (TT) anomalies over the Indian Ocean, resulting in a strengthened meridional TT gradient favorable to a prolonged monsoonal rainy season. Second, a positive NATS mode tends to induce closed zonal vertical circulation over the tropical Atlantic, North Africa and the tropical Indian Ocean, creating anomalous convergence over India, and hence an enhanced ISM. Third, westerly surface wind anomalies, related to the NATS mode and coursing over the Arabian Sea, can increase moisture delivery to the monsoon region, causing enhanced rainfall in India. This mechanism resembles a decadal-scale mechanism that operates in the present-day climate. We also compared the Atlantic multidecadal oscillation (AMO), an alternative North Atlantic SST mode, with the NATS mode to determine their relationships to the ISM. A Holocene transient simulation indicates that the AMO’s trend has diverged from that of the ISM since 5.5 ka BP, due to inverse SST trends over the tropical and extratropical North Atlantic. This latter trend leads to a much weaker relationship between the AMO and the ISM, relative to that observed between the NATS mode and the ISM. We therefore suggest that the centennial relationship between the North Atlantic SSTs and the ISM during the Holocene differs from the decadal to multidecadal relationship they share in the present-day climate system.

Keywords

North Atlantic tripole SST variability Atlantic multidecadal oscillation Indian summer monsoon Holocene 

Notes

Acknowledgments

This research was jointly supported by the National Natural Science Foundation of China (NSFC) (41275071, 41130102) and the Fundamental Research Funds for the Central Universities (lzujbky-2015-218). LJ acknowledges support from a Deutsche Forschungsgemeinschaft (DFG) grant through the Cluster of Excellence’s Future Ocean initiative (EXC 80/1). Modeling experiments using the KCM were performed at the Kiel University Computer Center, Kiel, Germany. W. Park and L. Mojib of GEOMAR Helmholtz-Zentrum für Ozeanforschung Kiel and B. Schneider of Christian-Albrechts-Universität zu Kiel are kindly thanked for their help and thoughtful discussions on KCM simulation methods. The authors also appreciate the reviewers’ constructive comments and suggestions on an earlier version of this paper.

References

  1. Berger A, Loutre MF (1991) Insolation values for the climate of the last 10 million years. Quat Sci Rev 10:297–317CrossRefGoogle Scholar
  2. Björnsson H, Venegas SA (1997) A manual for EOF and SVD analyses of climate data. McGill University, CCGCR Report No. 97-1, Montréal, Québec, 52 ppGoogle Scholar
  3. Blunden J, Arndt DS (2012) State of the climate in 2011. Bull Am Meteorol Soc 93:S1–S264 (Special supplement) CrossRefGoogle Scholar
  4. Burns S, Fleitmann D, Matter A, Kramers J, Al-Subbary AA (2003) Indian Ocean climate and an absolute chronology over Dansgaard/Oeschger events 9 to 13. Science 301:1365–1367CrossRefGoogle Scholar
  5. Cayan DR (1992) Latent and sensible heat flux anomalies over the northern oceans: driving the sea surface temperature. J Phys Oceanogr 22:859–881CrossRefGoogle Scholar
  6. Compo GP et al (2011) The twentieth century reanalysis project. Q J R Meteorol Soc 137:1–28CrossRefGoogle Scholar
  7. Cullen HM, deMenocal PB, Hemming S, Hemming G, Brown FH, Guilderson T, Sirocko F (2000) Climate change and the collapse of the Akkadian empire: evidence from the deep sea. Geology 28:379–382CrossRefGoogle Scholar
  8. Dallmeyer A, Claussen M, Fischer N, Haberkorn K, Wagner S, Pfeiffer M, Jin L, Khon V, Wang Y, Herzschuh U (2015) The evolution of sub-monsoon systems in the Afro-Asian monsoon region during the Holocene—comparison of different transient climate model simulations. Clim Past 10:2293–2353CrossRefGoogle Scholar
  9. Davis M, Thompson L, Yao T, Wang N (2005) Forcing of the Asian monsoon on the Tibetan Plateau: evidence from high-resolution ice core and tropical coral records. J Geophys Res 110:D04101. doi: 10.1029/2004JD004933 Google Scholar
  10. Delworth TL, Mann ME (2000) Observed and simulated multidecadal variability in the Northern Hemisphere. Clim Dyn 16:661–676CrossRefGoogle Scholar
  11. deMenocal P (2001) Cultural responses to climate change during the late Holocene. Science 292:667–673CrossRefGoogle Scholar
  12. Deser C, Blackmon ML (1993) Surface climate variations over the North Atlantic Ocean during winter: 1900–1989. J Clim 6:1743–1753CrossRefGoogle Scholar
  13. Deser C, Timlin MS (1997) Atmosphere–ocean interaction on weekly timescales in the North Atlantic and Pacific. J Clim 10:393–408CrossRefGoogle Scholar
  14. Deser C, Alexander MA, Xie SP, Phillips AS (2010) Sea surface temperature variability: patterns and mechanisms. Ann Rev Mar Sci 2:115–143. doi: 10.1146/annurev-marine-120408-151453 CrossRefGoogle Scholar
  15. Di Lorenzo E, Cobb KM, Furtado JC, Schneider N, Anderson B, Bracco A, Alexander MA, Vimont D (2010) Central Pacific El Niño and decadal climate change in the North Pacific. Nat Geosci 3:762–765CrossRefGoogle Scholar
  16. Ding Q, Wang B (2005) Circumglobal teleconnection in the northern hemisphere summer. J Clim 18:3483–3505CrossRefGoogle Scholar
  17. Enfield DB, Mestas-Nuñez AM, Trimble PJ (2001) The Atlantic multidecadal oscillation and its relationship to rainfall and river flows in the continental U.S. Geophys Res Lett 28(10):2077–2080CrossRefGoogle Scholar
  18. Enzel Y, Ely LL, Mishra S, Ramesh R, Amit R, Lazar B, Rajaguru SN, Baker VR, Sandler A (1999) High-resolution Holocene environmental changes in the Thar Desert, northwestern India. Science 284:125–128CrossRefGoogle Scholar
  19. Fan M, Schneider EK (2012) Observed decadal North Atlantic tripole SST variability. Part I: weather noise forcing and coupled response. J Atmos Sci 69:35–50CrossRefGoogle Scholar
  20. Feng S, Hu Q (2008) How the North Atlantic multidecadal oscillation may have influenced the Indian summer monsoon during the past two millennia. Geophys Res Lett 35:L01707. doi: 10.1029/2007GL032484 CrossRefGoogle Scholar
  21. Fleitmann D, Burns SJ, Mudelsee M, Neff U, Kramers J, Mangini A, Matter A (2003) Holocene forcing of the Indian monsoon recorded in a stalagmite from Southern Oman. Science 300:1737–1739CrossRefGoogle Scholar
  22. Fleitmann D, Burns SJ, Mangini A, Mudelsee M, Kramers J, Villa I, Neff U, Al-Subbary AA, Buettner A, Hippler D (2007) Holocene ITCZ and Indian monsoon dynamics recorded in stalagmites from Oman and Yemen (Socotra). Quat Sci Rev 26:170–188CrossRefGoogle Scholar
  23. Gadgil S, Rajeevan M, Nanjundiah R (2005) Monsoon prediction—Why yet another failure? Curr Sci 88:1389–1400Google Scholar
  24. Goswami BN, Xavier PK (2005) ENSO control on the south Asian monsoon through the length of the rainy season. Geophys Res Lett 32:L18717. doi: 10.1029/2005GL023216 Google Scholar
  25. Goswami BN, Krishnamurthy B, Annamalai H (1999) A broad-scale circulation index for interannual variability of the Indian summer monsoon. Q J R Meteorol Soc 125:611–633CrossRefGoogle Scholar
  26. Goswami BN, Madhusoodanan MS, Neema CP, Sengupta D (2006) A physical mechanism for North Atlantic SST influence on the Indian summer monsoon. Geophys Res Lett 33:L02706. doi: 10.1029/2005GL024803 Google Scholar
  27. Gupta AK, Anderson DM, Overpeck JT (2003) Abrupt changes in the Asian southwest monsoon during the Holocene and their links to the North Atlantic Ocean. Nature 421:354–357CrossRefGoogle Scholar
  28. Gupta AK, Das M, Anderson DM (2005) Solar influence on the Indian summer monsoon during the Holocene. Geophys Res Lett 32:L17703. doi: 10.1029/2005GL022685 CrossRefGoogle Scholar
  29. Haug GH, Hughen KA, Peterson LC, Sigman DM, Röhl U (2001) Southward migration of the intertropical convergence zone through the Holocene. Science 293:1304–1308CrossRefGoogle Scholar
  30. Hong YT, Hong B, Lin QH, Zhu YX, Shibata Y, Hirota M, Uchida M, Leng XT, Jiang HB, Xu H, Wang H, Yi L (2003) Correlation between Indian Ocean summer monsoon and North Atlantic climate during the Holocene. Earth Planet Sci Lett 211:371–380CrossRefGoogle Scholar
  31. Jin L, Schneider B, Park W, Latif M, Khon V, Zhang X (2014) The spatial-temporal patterns of Asian summer monsoon precipitation in response to Holocene insolation change: a model-data synthesis. Quat Sci Rev 85:47–62CrossRefGoogle Scholar
  32. Kim J-H, Rimbu N, Lorenz SJ, Lohmann G, Nam S-I, Schouten S, Rühlemann C, Schneider RR (2004) North Pacific and North Atlantic sea-surface temperature variability during the Holocene. Quat Sci Rev 23:2141–2154CrossRefGoogle Scholar
  33. Krishnamurthy V, Goswami BN (2000) Indian monsoon–ENSO relationship on interdecadal timescale. J Clim 13:579–595CrossRefGoogle Scholar
  34. Krishnamurthy L, Krishnamurthy V (2013) Decadal scale oscillations and trend in the Indian monsoon rainfall. Clim Dyn 43:319–331CrossRefGoogle Scholar
  35. Krishnamurthy L, Krishnamurthy V (2015) Teleconnections of Indian monsoon rainfall with AMO and Atlantic tripole. Clim Dyn. doi: 10.1007/s00382-015-2701-3 Google Scholar
  36. Kutzbach JE, Liu Z (1997) Oceanic feedback on the western African monsoon at 6000 BP. Science 278:440–443CrossRefGoogle Scholar
  37. Latif M, Park W, Ding H, Keenlyside N (2009) Internal and external North Atlantic sector variability in the Kiel Climate Model. Meteorol Z 18:433–443CrossRefGoogle Scholar
  38. Levitus S (1982) Climatological atlas of the world ocean, 13. NOAA/ERL GFDL, Washington, p 173Google Scholar
  39. Li S, Perlwitz J, Quan X, Hoerling MP (2008) Modelling the influence of North Atlantic multidecadal warmth on the Indian summer rainfall. Geophys Res Lett 35:L05804. doi: 10.1029/2007GL032901 Google Scholar
  40. Liu Z, Otto-Bliesner B, Kutzbach J, Li L, Shields C (2003) Coupled climate simulation of the evolution of global monsoons in the Holocene. J Clim 16:2472–2490CrossRefGoogle Scholar
  41. Liu ZY, Wen XY, Brady EC, Otto-Bliesner B, Yu G, Lu HY, Cheng H, Wang YJ, Zheng WP, Ding YH, Edwards RL, Cheng J, Liu W, Yang H (2014) Chinese cave records and the East Asia summer monsoon. Quat Sci Rev 83:115–128CrossRefGoogle Scholar
  42. Livezey RE, Chen WY (1983) Statistical field significance and it’s determination by Monte Carlo techniques. Mon Weather Rev 111:46–59CrossRefGoogle Scholar
  43. Lorenz S, Lohmann G (2004) Acceleration technique for Milankovitch type forcing in a coupled atmosphere-ocean circulation model: method and application for the Holocene. Clim Dyn 23:727–743CrossRefGoogle Scholar
  44. Lorenz SJ, Kim J-H, Rimbu N, Schneider RR, Lohmann G (2006) Orbitally driven insolation forcing on Holocene climate trends: evidence from alkenone data and climate modeling. Paleoceanography 21:PA1002. doi: 10.1029/2005PA001152 CrossRefGoogle Scholar
  45. Lu R, Dong B, Ding H (2006) Impact of the Atlantic multidecadal oscillation on the Asian summer monsoon. Geophys Res Lett 33:L24701. doi: 10.1029/2006GL027655 CrossRefGoogle Scholar
  46. Luo F, Li S, Furevik T (2011) The connection between the Atlantic multidecadal oscillation and the Indian summer monsoon in Bergen climate model version 2.0. J Geophys Res 116:D19117. doi: 10.1029/2011JD015848 CrossRefGoogle Scholar
  47. Madec G (2008) NEMO reference manual, ocean dynamics component: NEMO-OPA. Preliminary version. Note du Pole de modélisation, Institut Pierre-Simon Laplace (IPSL), France, No 27 ISSN No 1288-1619Google Scholar
  48. Maharatna A (1996) The demography of famines: an indian historical perspective. Oxford Univ Press, New DelhiGoogle Scholar
  49. Marshall J, Johnson H, Goodman J (2001) A study of the interaction of the North Atlantic oscillation with ocean circulation. J Clim 14:1399–1421CrossRefGoogle Scholar
  50. Mohtadi M, Prange M, Oppo DW, de Pol-Holz R, Merkel U, Zhang X, Steinke S, Lückge A (2014) North Atlantic forcing of tropical Indian Ocean climate. Nature 509:76–80CrossRefGoogle Scholar
  51. Morrill C, Overpeck J, Cole JE (2003) A synthesis of abrupt changes in the Asian summer monsoon since the last deglaciation. Holocene 13:465–476CrossRefGoogle Scholar
  52. Park W, Latif M (2008) Multidecadal and multicentennial variability of the meridional overturning circulation. Geophys Res Lett 35:L22703. doi: 10.1029/2008GL035779 CrossRefGoogle Scholar
  53. Park W, Latif M (2010) Pacific and Atlantic multidecadal variability in the Kiel Climate Model. Geophys Res Lett 37:L24702. doi: 10.1029/2010GL045560 Google Scholar
  54. Park W, Keenlyside N, Latif M, Ströh A, Redler R, Roeckner E, Madec G (2009) Tropical Pacific climate and its response to global warming in the Kiel Climate Model. J Clim 22:71–92CrossRefGoogle Scholar
  55. Pottapinjara V, Girishkumar MS, Ravichandran M, Murtugudde R (2014) Influence of the Atlantic zonal mode on monsoon depressions in the Bay of Bengal during boreal summer. J Geophys Res 119:6456–6469. doi: 10.1002/2014JD021494 Google Scholar
  56. Rajeevan M, Sridhar L (2008) Inter-annual relationship between Atlantic sea surface temperature anomalies and Indian summer monsoon. Geophys Res Lett 35:L21704. doi: 10.1029/2008GL036025 CrossRefGoogle Scholar
  57. Rayner NA, Parker DE, Horton EB, Folland CK, Alexander LV, Rowell DP, Kent EC, Kaplan A (2003) Global analyses of sea surface temperature, sea ice, and night marine air temperature since the late nineteenth century. J Geophys Res 108:4407. doi: 10.1029/2002JD002670,D14 CrossRefGoogle Scholar
  58. Renssen H, Seppä H, Heiri O, Roche DM, Goosse H, Fichefet T (2009) The spatial and temporal complexity of the Holocene thermal maximum. Nat Geosci 2:411–414. doi: 10.1038/ngeo513 CrossRefGoogle Scholar
  59. Roechner E, Bauml G, Bonaventura L, Brokopf R, Esch M, Giorgetta M, Hagemann S, Kirchner I, Kornblueh L, Manzini E, Rhodin A, Schlese U, Schulzweida U, Tompkins A (2003) The atmospheric general circulation model ECHAM5. Part I: model description. Max Planck Institute for Meteorology, Report 349, 127 pp. Available from MPI for Meteorology, Bundesstr. 53, Hamburg, GermanyGoogle Scholar
  60. Schlesinger ME, Ramankutty N (1994) An oscillation in the global climate system of period 65–70 years. Nature 367:723–726CrossRefGoogle Scholar
  61. Schneider B, Leduc G, Park W (2010) Disentangling seasonal signals in Holocene climate trends by satellite-model-proxy integration. Paleoceanography 25:PA4217. doi: 10.1029/2009PA001893 CrossRefGoogle Scholar
  62. Sinha A, Cannariato KG, Stott LD, Cheng H, Edwards RL, Yadava MG, Ramesh R, Singh IB (2007) A 900-year (600 to 1500 A.D.) record of the Indian summer monsoon precipitation from the core monsoon zone of India. Geophys Res Lett 34:L16707. doi: 10.1029/2007GL030431 CrossRefGoogle Scholar
  63. Staubwasser M, Weiss H (2006) Holocene climate and cultural evolution in late prehistoric–early historic West Asia. Quat Res 66:372–387CrossRefGoogle Scholar
  64. Staubwasser M, Sirocko F, Grootes PM, Segl M (2003) Climate change at the 4.2 ka BP termination of the Indus valley civilization and Holocene south Asian monsoon variability. Geophys Res Lett 30(8):1425. doi: 10.1029/2002GL016822 CrossRefGoogle Scholar
  65. Sukumar R, Ramesh R, Pant RK, Rajagopalan G (1993) A δ13C record of late Quaternary climate change from tropical peats in southern India. Nature 364:703–706CrossRefGoogle Scholar
  66. Trenberth KE, Shea DJ (2006) Atlantic hurricanes and natural variability in 2005. Geophys Res Lett 33:L12704. doi: 10.1029/2006GL026894 CrossRefGoogle Scholar
  67. Valcke S (2006), OASIS3 user guide (prism_2-5), PRISM support initiative 3, 68 ppGoogle Scholar
  68. Visbeck M, Chassignet E, Curry R, Delworth T, Dickson B, Krahmann G (2003) The ocean’s response to North Atlantic Oscillation variability. In: Hurrell J, Kushnir Y, Ottersen G, Visbeck M (eds) The North Atlantic Oscillation: climatic significance and environmental impact. AGU Geophysical Monograph, vol 134, pp 113–146Google Scholar
  69. Wang B, Fan Z (1999) Choice of south Asian summer monsoon indices. Bull Am Meteorol Soc 80:629–638CrossRefGoogle Scholar
  70. Wang Y, Li S, Luo D (2009) Seasonal response of Asian monsoonal climate to the Atlantic multidecadal oscillation. J Geophys Res 114:D02112. doi: 10.1029/2008JD010929 Google Scholar
  71. Webster PJ (1987) The elementary monsoon. In: Fein JS, Stephens PI (eds) Monsoons. Wiley, New York, pp 3–32Google Scholar
  72. Webster PJ, Yang S (1992) Monsoon and ENSO: selectively interactive systems. Q J R Meteorol Soc 118:877–926CrossRefGoogle Scholar
  73. Wei W, Lohmann G (2012) Simulated Atlantic multidecadal oscillation during the Holocene. J Clim 25:6989–7002CrossRefGoogle Scholar
  74. Yadava MG, Ramesh R (2005) Monsoon reconstruction from radiocarbon dated tropical Indian speleothems. The Holocene 15:48–59CrossRefGoogle Scholar
  75. Yin QZ, Berger A, Crucifix M (2009) Individual and combined effects of ice sheets and precession on MIS-13 climate. Clim Past 5:229–243CrossRefGoogle Scholar
  76. Zhang R, Delworth TL (2006) Impact of Atlantic multidecadal oscillations on India/Sahel rainfall and Atlantic hurricanes. Geophys Res Lett 33:L17712. doi: 10.1029/2006GL026267 CrossRefGoogle Scholar
  77. Zhao Y, Braconnot P, Marti O, Harrison SP, Hewitt C, Kitoh A, Liu Z, Mikolajewicz U, Otto-Bliesner B, Weber SL (2005) A multi-model analysis of the role of the ocean on the African and Indian monsoon during the mid-Holocene. Clim Dyn 25:777–800CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  1. 1.Key Laboratory of Western China’s Environmental Systems, College of Earth and Environmental SciencesLanzhou UniversityLanzhouChina

Personalised recommendations