Climate Dynamics

, Volume 49, Issue 3, pp 891–907 | Cite as

Interannual-decadal variability of wintertime mixed layer depths in the North Pacific detected by an ensemble of ocean syntheses

  • Takahiro Toyoda
  • Yosuke Fujii
  • Tsurane Kuragano
  • Naohiro Kosugi
  • Daisuke Sasano
  • Masafumi Kamachi
  • Yoichi Ishikawa
  • Shuhei Masuda
  • Kanako Sato
  • Toshiyuki Awaji
  • Fabrice Hernandez
  • Nicolas Ferry
  • Stéphanie Guinehut
  • Matthew Martin
  • K. Andrew Peterson
  • Simon A. Good
  • Maria Valdivieso
  • Keith Haines
  • Andrea Storto
  • Simona Masina
  • Armin Köhl
  • Yonghong Yin
  • Li Shi
  • Oscar Alves
  • Gregory Smith
  • You-Soon Chang
  • Guillaume Vernieres
  • Xiaochun Wang
  • Gael Forget
  • Patrick Heimbach
  • Ou Wang
  • Ichiro Fukumori
  • Tong Lee
  • Hao Zuo
  • Magdalena Balmaseda
Article

Abstract

The interannual-decadal variability of the wintertime mixed layer depths (MLDs) over the North Pacific is investigated from an empirical orthogonal function (EOF) analysis of an ensemble of global ocean reanalyses. The first leading EOF mode represents the interannual MLD anomalies centered in the eastern part of the central mode water formation region in phase opposition with those in the eastern subtropics and the central Alaskan Gyre. This first EOF mode is highly correlated with the Pacific decadal oscillation index on both the interannual and decadal time scales. The second leading EOF mode represents the MLD variability in the subtropical mode water (STMW) formation region and has a good correlation with the wintertime West Pacific (WP) index with time lag of 3 years, suggesting the importance of the oceanic dynamical response to the change in the surface wind field associated with the meridional shifts of the Aleutian Low. The above MLD variabilities are in basic agreement with previous observational and modeling findings. Moreover the reanalysis ensemble provides uncertainty estimates. The interannual MLD anomalies in the first and second EOF modes are consistently represented by the individual reanalyses and the amplitudes of the variabilities generally exceed the ensemble spread of the reanalyses. Besides, the resulting MLD variability indices, spanning the 1948–2012 period, should be helpful for characterizing the North Pacific climate variability. In particular, a 6-year oscillation including the WP teleconnection pattern in the atmosphere and the oceanic MLD variability in the STMW formation region is first detected.

Keywords

Ocean reanalysis Mixed layer depth North Pacific Mode water Pacific decadal oscillation West Pacific teleconnection pattern 

Notes

Acknowledgments

We thank three anonymous reviewers for their constructive comments. Thanks are extended to Dr. H. Tsujino and Dr. K. Sakamoto for their kind and valuable advices. This work was partly supported by the Research Program on Climate Change Adaptation (RECCA) of the Ministry of Education, Culture, Sports, Science and Technology of the Japanese government (MEXT), by the Data Integration and Analysis System (DIAS) of the MEXT, by the joint UK DECC/Defra Met Office Hadley Centre Climate Programme (GA01101), by the UK Public Weather Service Research Programme, and by the European Commission funded projects MyOcean (FP7-SPACE-2007-1) and MyOcean2 (FP7-SPACE-2011-1). During the preparation of this article, our co-author Nicolas Ferry passed away. He was an active and supportive member of the ORA-IP and CLIVAR-GSOP activities.

References

  1. Akima H (1970) A new method of interpolation and smooth curve fitting based on local procedures. J Assoc Comput Mach 17:589–603CrossRefGoogle Scholar
  2. Balmaseda MA, Hernandez F, Storto A, Palmer MD, Alves O, Shi L, Smith GC, Toyoda T, Valdivieso M, Barnier B, Behringer D, Boyer T, Chang YS, Chepurin GA, Ferry N, Forget G, Fujii Y, Good S, Guinehut S, Haines K, Ishikawa Y, Keeley S, Köhl A, Lee T, Martin M, Masina S, Masuda S, Meyssignac B, Mogensen K, Parent L, Peterson KA, Tang YM, Yin Y, Vernieres G, Wang X, Waters J, Wedd R, Wang O, Xue Y, Chevallier M, Lemieux JF, Dupont F, Kuragano T, Kamachi M, Awaji T, Caltabiano A, Wilmer-Becker K, Gaillard F (2015) The Ocean Reanalyses Intercomparison Project (ORA-IP). J Oper Oceanogr 8:s80–s97. doi:10.1080/1755876X.2015.1022329 CrossRefGoogle Scholar
  3. Barnston AG, Livezey RE (1987) Classification, seasonality and persistence of low-frequency atmospheric circulation patterns. Mon Weather Rev 115:1083–1126CrossRefGoogle Scholar
  4. de Boyer Montégut C, Madec G, Fischer AS, Lazar A, Iudicone D (2004) Mixed layer depth over the global ocean: an examination of profile data and a profile-based climatology. J Geophys Res 109:C12003. doi:10.1029/2004JC002378 CrossRefGoogle Scholar
  5. Deser C, Alexander MA, Timlin MS (1996) Upper-ocean thermal variations in the North Pacific during 1970–1991. J Clim 9:1840–1855CrossRefGoogle Scholar
  6. Freeland HJ, Cummins PF (2005) Argo: a new tool for environmental monitoring and assessment of the world’s oceans, an example from the NE Pacific. Prog Oceanogr 64:31–44. doi:10.1016/j.pocean.2004.11.002 CrossRefGoogle Scholar
  7. Hanawa K, Talley LD (2001) Mode waters. In: Sielder G, Chruch JJ, Gould J (eds) Ocean circulation and climate. Academic Press, NewYork, pp 373–386Google Scholar
  8. Hautala SL, Roemmich DH (1998) Subtropical mode water northeast Pacific Basin. J Geophys Res 103:13055–13066CrossRefGoogle Scholar
  9. Hosoda S, Ohira T, Sato K, Suga T (2010) Improved description of global mixed-865 layer depth using Argo profiling floats. J Oceanogr 66:773–787. doi:10.1007/s10872-866010-0063-3 CrossRefGoogle Scholar
  10. Huang RX, Qiu B (1994) Three-dimensional structure of the wind-driven circulation in the subtropical North Pacific. J Phys Oceanogr 24:1608–1622CrossRefGoogle Scholar
  11. Ishii M, Shouji A, Sugimoto S, Matsumoto T (2005) Objective analyses of sea-surface temperature and marine meteorological variables for the 20th century using ICOADS and the Kobe collection. Int J Climatol 25:865–879CrossRefGoogle Scholar
  12. Joyce TM, Thomas LN, Bahr F (2009) Wintertime observations of subtropical mode water formation within the Gulf Stream. Geophys Res Lett 36:L02607. doi:10.1029/2008GL035918 CrossRefGoogle Scholar
  13. Kara AB, Rochford PA, Hurlburt HE (2003) Mixed layer depth variability over the global ocean. J Geophys Res 108:3079. doi:10.1029/2000JC000736 CrossRefGoogle Scholar
  14. Kawasaki T (1991) Long-term variability in the pelagic fish populations. In: Kawasaki T, Tanaka S, Toba Y, Taniguchi A (eds) Long-term variability of pelagic fish populations and their environment. Pergamon Press, New YorkGoogle Scholar
  15. Kobayashi S, Ota Y, Harada Y, Ebita A, Moriya M, Onoda H, Onogi K, Kamahori M, Kobayashi C, Endo H, Miyaoka K, Takahashi K. (2015) The JRA-55 Renalysis: General specifications and basic characteristics. J Meteor Soc Japan 93:5–48. doi:10.2151/jmsj.2015-001 CrossRefGoogle Scholar
  16. Ladd C, Thompson LA (2002) Decadal variability of North Pacific central mode water. J Phys Oceanogr 32:2870–2881CrossRefGoogle Scholar
  17. Large WG, Yeager SG (2004) Diurnal to decadal global forcing for ocean and sea-ice models: the data sets and flux climatologies. Technical note TN-460 + STR, NCAR, Boulder, Colorado, USAGoogle Scholar
  18. Lee T, Awaji T, Balmaseda MA, Grenier E, Stammer D (2009) Ocean state estimation for climate research. Oceanography 22:160–167. doi:10.5670/oceanog.2009.74 CrossRefGoogle Scholar
  19. Levitus S (1982) Climatological atlas of the world ocean. NOAA/ERL GFDL, Princeton, New JerseyGoogle Scholar
  20. Li M, Myers PG, Freeland H (2005) An examination of historical mixed layer depths along line P in the Gulf of Alaska. Geophys Res Lett 32:L05613. doi:10.1029/2004GL021911 Google Scholar
  21. Mantua NJ, Hare SR, Zhang Y, Wallace JM, Francis RC (1997) A Pacific interdecadal climate oscillation with impacts on salmon production. B Am Meteorol Soc 78:1069–1079CrossRefGoogle Scholar
  22. Masuzawa J (1969) Subtropical mode water. Deep Sea Res 16:463–472Google Scholar
  23. Monterey G, Levitus S (1997) Seasonal variability of mixed layer depth for the world ocean. NOAA Atlas NESDIS 14. U.S. Government Printing Office, Washington, DC, USAGoogle Scholar
  24. Newman M, Compo GP, Alexander MA (2003) ENSO-forced variability of the Pacific decadal oscillation. J Clim 16:3853–3857CrossRefGoogle Scholar
  25. Oka E, Qiu B (2012) Progress of North Pacific mode water research in the past decade. J Oceanogr 68:5–20. doi:10.1007/sl0872-011-0032-5 CrossRefGoogle Scholar
  26. Oka E, Talley LD, Suga T (2007) Temporal variability of winter mixed layer in the mid-to high-latitude North Pacific. J Oceanogr 63:293–307. doi:10.1007/s10872-007-0029-2 CrossRefGoogle Scholar
  27. Oka E, Suga T, Sukigara C, Toyama K, Shimada K, Yoshida J (2011) "Eddy resolving" observation of the North Pacific subtropical mode water. J Phys Oceanogr 41:666–681. doi:10.1175/2011JPO4501.1 CrossRefGoogle Scholar
  28. Pedlosky J (1996) Ocean circulation theory. Springer, Berlin. doi:10.1007/987-3-662-03204-6
  29. Peng G, Chassignet EP, Kwon YO, Riser SC (2006) Investigation of variability of the North Atlantic subtropical mode water using profiling float data and numerical model output. Ocean Model 13:65–85. doi:10.1016/j.ocemod.2005.07.001 CrossRefGoogle Scholar
  30. Press WG, Teukolsky SA, Vetterling WT, Flannery BP (1992) Numerical recipes in FORTRAN: the art of scientific computing, 2nd edn. Cambridge University Press, CambridgeGoogle Scholar
  31. Qiu B, Chen S (2005) Variability of the Kuroshio Extension jet, recirculation gyre, and mesoscale eddies on decadal time scales. J Phys Oceanogr 35:2090–2103. doi:10.1175/JPO2807.1 CrossRefGoogle Scholar
  32. Qiu B, Chen S, Hacker P (2007) Effect of mesoscale eddies on subtropical mode water variability from the Kuroshio Extension System Study (KESS). J Phys Oceanogr 37:982–1000. doi:10.1175/JPO03097.1 CrossRefGoogle Scholar
  33. Qu T, Chen J (2009) A North Pacific decadal variability in subduction rate. Geophys Res Lett 36:L22602. doi:10.1029/2009GL040914 CrossRefGoogle Scholar
  34. Schneider N, Miller AJ, Alexander MA, Deser C (1999) Subduction of decadal North Pacific temperature anomalies: observations and dynamics. J Phys Oceanogr 29:1056–1070CrossRefGoogle Scholar
  35. Senjyu T, Sudo H (1994) The upper portion of the Japan Sea proper water, its source and circulation as deduced from isopycnal analysis. J Oceanogr 50:663–690CrossRefGoogle Scholar
  36. Speer K, Forget G (2013) Global distribution and formation of mode waters. In: Siedler G, Griffies SM, Gould J, Church JA (eds) Ocean circulation and climate: a 21st century perspective. Academic Press, New York, pp 211–226. doi:10.1016/B978-0-12-391851-2.00009-X CrossRefGoogle Scholar
  37. Storto A, Masina S, Balmaseda M, Guinehut S, Xue Y, Szekely T, Fukumori I, Forget G, Chang Y-S, Good SA, Köhl A, Vernieres G, Ferry N, Peterson KA, Behringer D, Ishii M, Masuda S, Fujii Y, Toyoda T, Yin Y, Valdivieso M, Barnier B, Boyer T, Lee T, Gourrion J, Wang O, Heimback P, Rosati A, Kovach R, Hernandez F, Martin MJ, Kamachi M, Kuragano T, Mogensen K, Alves O, Haines K, Wang X (2015) Steric sea level variability (1993–2010) in an ensemble of ocean reanalyses and objective analyses. Clim Dyn. doi:10.1007/s00382-015-2554-9 Google Scholar
  38. Suga T, Takei Y, Hanawa K (1997) Thermostad distribution in the North Pacific subtropical gyre: the central mode water and the subtropical mode water. J Phys Oceanogr 27:140–152CrossRefGoogle Scholar
  39. Sugimoto S, Hanawa K (2009) Decadal and interdecadal variations of the Aleutian Low activity and their relation to upper oceanic variations over the North Pacific. J Meteor Soc Jpn 87:601–619. doi:10.2151/jmsj.87.601 CrossRefGoogle Scholar
  40. Sugimoto S, Hanawa K (2010) Impact of Aleutian low activity on the STMW formation in the Kuroshio recirculation gyre region. Geophys Res Lett 37:L03606. doi:10.1029/2009GL041795 CrossRefGoogle Scholar
  41. Takahashi T, Feely RA, Weiss RF, Wanninkhof RH, Chipman DW, Sutherland SC, Takahashi TT (1997) Global air-sea flux of CO2: an estimate based on measurements of sea–air pCO2 difference. P Natl Acad Sci 94:8292–8299CrossRefGoogle Scholar
  42. Toyoda T, Awaji T, Masuda S, Sugiura N, Igarashi H, Mochizuki T, Ishikawa Y (2011) Interannual variability of North Pacific eastern subtropical mode water formation in the 1990s derived from a 4-dimensional variational ocean data assimilation experiment. Dyn Atmos Oceans 51:1–25. doi:10.1016/j.dynatmoce.2010.09.001 CrossRefGoogle Scholar
  43. Toyoda T, Fujii Y, Kuragano T, Kamachi M, Ishikawa Y, Masuda S, Sato K, Awaji T, Hernandez F, Ferry N, Guinehut S, Martin M, Peterson KA, Good S, Valdivieso M, Haines K, Storto A, Masina S, Köhl A, Zuo H, Balmaseda M, Yin Y, Shi L, Alves O, Smith G, Chang YS, Vernieres G, Wang X, Forget G, Heimbach P, Wang O, Fukumori I, Lee T (2015) Intercomparison and validation of the mixed layer depth fields of global ocean syntheses. Clim Dyn. doi:10.1007/s00382-015-2637-7 Google Scholar
  44. Trenberth KE, Hurrell JW (1994) Decadal atmosphere-ocean variations in the Pacific. Clim Dyn 9:303–319CrossRefGoogle Scholar
  45. Wallace JM, Gutzler DS (1981) Teleconnections in the geopotential height field during the Northern Hemispheric winter. Mon Weather Rev 109:784–812CrossRefGoogle Scholar
  46. Wen C, Kumar A, Xue Y (2014) Factors contributing to uncertainty in Pacific Decadal Oscillation index. Geophys Res Lett 41:7980–7986. doi:10.1002/2014GL061992 CrossRefGoogle Scholar
  47. Xue Y, Balmaseda MA, Boyer T, Ferry N, Good S, Ishikawa I, Kumar A, Rienecker M, Rosati AJ, Yin Y (2012) A comparative analysis of upper-ocean heat content variability from an ensemble of operational ocean reanalyses. J Clim 25:6905–6929. doi:10.1175/JCLI-D-11-00542.1 CrossRefGoogle Scholar
  48. Yasuda T, Hanawa K (1997) Decadal changes in the mode waters in the midlatitude North Pacific. J Phys Oceanogr 27:858–870CrossRefGoogle Scholar
  49. Yasuda I, Tozuka T, Noto M, Kouketsu S (2000) Heat balance and regime shifts of the mixed layer in the Kuroshio extension. Prog Oceanogr 47:257–278. doi:10.1016/S0079-6611(00)00038-0 CrossRefGoogle Scholar
  50. Zhang J, Woodgate R, Moritz R (2010) Sea ice response to atmospheric and oceanic forcing in the Bering Sea. J Phys Oceanogr 40:1729–1747. doi:10.1175/2010JPO4323.1 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • Takahiro Toyoda
    • 1
  • Yosuke Fujii
    • 1
  • Tsurane Kuragano
    • 1
  • Naohiro Kosugi
    • 1
  • Daisuke Sasano
    • 1
  • Masafumi Kamachi
    • 1
  • Yoichi Ishikawa
    • 2
  • Shuhei Masuda
    • 3
  • Kanako Sato
    • 3
  • Toshiyuki Awaji
    • 4
  • Fabrice Hernandez
    • 5
    • 6
  • Nicolas Ferry
    • 6
  • Stéphanie Guinehut
    • 7
  • Matthew Martin
    • 8
  • K. Andrew Peterson
    • 8
  • Simon A. Good
    • 8
  • Maria Valdivieso
    • 9
  • Keith Haines
    • 9
  • Andrea Storto
    • 10
  • Simona Masina
    • 10
    • 11
  • Armin Köhl
    • 12
  • Yonghong Yin
    • 13
  • Li Shi
    • 13
  • Oscar Alves
    • 13
  • Gregory Smith
    • 14
  • You-Soon Chang
    • 15
    • 16
  • Guillaume Vernieres
    • 17
    • 18
  • Xiaochun Wang
    • 19
  • Gael Forget
    • 20
  • Patrick Heimbach
    • 20
  • Ou Wang
    • 21
  • Ichiro Fukumori
    • 21
  • Tong Lee
    • 21
  • Hao Zuo
    • 22
  • Magdalena Balmaseda
    • 22
  1. 1.Oceanography and Geochemistry Research Department, Meteorological Research InstituteJapan Meteorological Agency (MRI/JMA)TsukubaJapan
  2. 2.Center for Earth Information Science and TechnologyJapan Agency for Marine-Earth Science and Technology (CEIST/JAMSTEC)YokohamaJapan
  3. 3.Research and Development Center for Global Change (RCGC)JAMSTECYokosukaJapan
  4. 4.Kyoto UniversityKyotoJapan
  5. 5.Institut de Recherche pour le Développement (IRD)ToulouseFrance
  6. 6.Mercator OcéanRamonville Saint-AgneFrance
  7. 7.Collecte Localisation Satellites (CLS)Ramonville Saint-AgneFrance
  8. 8.Met OfficeExeterUK
  9. 9.National Centre for Earth Observation (NCEO), Department of MeteorologyUniversity of Reading (U-Reading)ReadingUK
  10. 10.Centro Euro-Mediterraneo sui Cambiamenti Climatici (CMCC)BolognaItaly
  11. 11.Istituto Nazionale di Geofisica e Vulcanologia (INGV)BolognaItaly
  12. 12.Universität Hamburg (U-Hamburg)HamburgGermany
  13. 13.Centre for Australian Weather and Climate ResearchBureau of Meteorology (BOM)MelbourneAustralia
  14. 14.Environment CanadaQuebecCanada
  15. 15.Geophysical Fluid Dynamics LaboratoryNational Oceanic and Atmospheric Administration (GFDL/NOAA)PrincetonUSA
  16. 16.Kongju National UniversityKongjuSouth Korea
  17. 17.Science System and Applications, Inc.LanhamUSA
  18. 18.Global Modeling and Assimilation OfficeNational Aeronautics and Space Administration Goddard Space Flight Center (GSFC/NASA/GMAO)GreenbeltUSA
  19. 19.Joint Institute for Regional Earth System Science and EngineeringUniversity of CaliforniaLos AngelesUSA
  20. 20.Department of Earth, Atmospheric and Planetary SciencesMassachusetts Institute of Technology (MIT)CambridgeUSA
  21. 21.Jet Propulsion Laboratory (JPL)California Institute of TechnologyPasadenaUSA
  22. 22.European Centre for Medium-Range Weather Forecasts (ECMWF)ReadingUK

Personalised recommendations