Climate Dynamics

, Volume 46, Issue 9–10, pp 2821–2846

Teleconnection responses in multi-GCM driven CORDEX RCMs over Eastern Africa

  • Hussen Seid Endris
  • Christopher Lennard
  • Bruce Hewitson
  • Alessandro Dosio
  • Grigory Nikulin
  • Hans-Jürgen Panitz
Article

Abstract

The ability of climate models to simulate atmospheric teleconnections provides an important basis for the use and analysis of climate change projections. This study examines the ability of COordinated Regional climate Downscaling EXperiment models, with lateral and surface boundary conditions derived from Coupled Global Climate Models (CGCMs), to simulate the teleconnections between tropical sea surface temperatures and rainfall over Eastern Africa. The ability of the models to simulate the associated changes in atmospheric circulation patterns over the region is also assessed. The models used in the study are Rossby Centre regional atmospheric model (RCA) driven by eight CGCMs and COnsortium for Small scale MOdeling (COSMO) Climate Limited-area Modelling (COSMO-CLM or CCLM) driven by four of the same CGCMs. Teleconnection patterns are examined using correlation, regression and composite analysis. In order to identify the source of the errors, CGCM-driven regional climate model (RCM) results are compared with ERA-Interim driven RCM results. Results from the driving CGCMs are also analyzed. The RCMs driven by reanalysis (quasi-perfect boundary conditions) successfully capture rainfall teleconnections in most examined regions and seasons. Our analysis indicates that most of the errors in simulating the teleconnection patterns come from the driving CGCMs. RCMs driven by MPI-ESM-LR, HadGEM2-ES and GFDL-ESM2M tend to perform relatively better than RCMs driven by other CGCMs. CanESM2 and MIROC5, and their corresponding downscaled results capture the teleconnections in most of the sub-regions and seasons poorly. This highlights the relative importance of CGCM-derived boundary conditions in the downscaled product and the need to improve these as well as the RCMs themselves. Overall, the results produced here will be very useful in identifying and selecting CGCMs and RCMs for the use of climate change projecting over the Eastern Africa.

Keywords

CORDEX CMIP5 Teleconnections Eastern Africa Rainfall RCM 

References

  1. Abram NJ, Gagan MK, Cole JE, Hantoro WS, Mudelsee M (2008) Recent intensification of tropical climate variability in the Indian Ocean. Nat Geosci 1(12):849–853CrossRefGoogle Scholar
  2. Anyah RO, Semazzi FH (2007) Variability of East African rainfall based on multiyear RegCM3 simulations. Int J Climatol 27(3):357–371CrossRefGoogle Scholar
  3. Bahaga TK, Mengistu Tsidu G, Kucharski F, Diro GT (2015) Potential predictability of the sea‐surface temperature forced equatorial East African short rains interannual variability in the 20th century. Quarterly J R Meteorol Soc 141(686):16–26CrossRefGoogle Scholar
  4. Baldauf M, Seifert A, Förstner J, Majewski D, Raschendorfer M, Reinhardt T (2011) Operational convective-scale numerical weather prediction with the COSMO model: description and sensitivities. Mon Weather Rev 139(12):3887–3905CrossRefGoogle Scholar
  5. Behera SK, Luo JJ, Masson S, Delecluse P, Gualdi S, Navarra A, Yamagata T (2005) Paramount impact of the Indian Ocean dipole on the East African short rains: A CGCM study. J Clim 18(21):4514–4530CrossRefGoogle Scholar
  6. Black E, Slingo J, Sperber KR (2003) An observational study of the relationship between excessively strong short rains in coastal East Africa and Indian Ocean SST. Mon Weather Rev 131(1):74–94CrossRefGoogle Scholar
  7. Bland JM, Altman DG (1995) Multiple significance tests: the Bonferroni method. BMJ 310(6973):170CrossRefGoogle Scholar
  8. Boulard D, Pohl B, Crétat J, Vigaud N, Pham-Xuan T (2013) Downscaling large-scale climate variability using a regional climate model: the case of ENSO over Southern Africa. Clim Dyn 40(5–6):1141–1168CrossRefGoogle Scholar
  9. Clark CO, Webster PJ, Cole JE (2003) Interdecadal variability of the relationship between the Indian Ocean zonal mode and East African coastal rainfall anomalies. J Clim 16(3):548–554CrossRefGoogle Scholar
  10. Da Rocha RP, Reboita MS, Dutra LMM, Llopart MP, Coppola E (2014) Interannual variability associated with ENSO: present and future climate projections of RegCM4 for South America-CORDEX domain. Clim Change. doi:10.1007/s10584-014-1119-y Google Scholar
  11. Dee DP, Uppala SM, Simmons AJ, Berrisford P, Poli P, Kobayashi S, Andrae U, Vitart F (2011) The ERA-Interim reanalysis: configuration and performance of the data assimilation system. Q J R Meteorol Soc 137(656):553–597CrossRefGoogle Scholar
  12. Déqué M, Piedelievre JP (1995) High resolution climate simulation over Europe. Clim Dyn 11(6):321–339CrossRefGoogle Scholar
  13. Diro GT, Grimes DIF, Black E (2011a) Large scale features affecting Ethiopian rainfall. In: Williams CJR, Kniveton DR (eds) African climate and climate change, Springer, Netherlands pp 13–50CrossRefGoogle Scholar
  14. Diro GT, Grimes DIF, Black E (2011b) Teleconnections between Ethiopian summer rainfall and sea surface temperature: part I—observation and modelling. Clim Dyn 37(1–2):103–119CrossRefGoogle Scholar
  15. Dosio A, Panitz H-J (2015) Dynamically downscaling of CMPI5 CGMs over CORDEX-Africa with COSMO-CLM: analysis of the climate change signal and differences with the driving GCMs. Clim Dyn. doi:10.1007/s00382-015-2664-4 Google Scholar
  16. Dosio A, Panitz H-J, Schubert-Frisius M, Luethi D (2015) Dynamical downscaling of CMIP5 global circulation models over CORDEX-Africa with COSMO-CLM: evaluation over the present climate and analysis of the added value. Clim Dyn 44:2637–2661. doi:10.1007/s00382-014-2262-x CrossRefGoogle Scholar
  17. Endris HS, Omondi P, Jain S, Lennard C, Hewitson B, Chang’a L, Awange JL, Tazalika L (2013) Assessment of the performance of CORDEX regional climate models in simulating East African rainfall. J Clim 26(21):8453–8475CrossRefGoogle Scholar
  18. Enfield DB, Mestas-Nuñez AM, Mayer DA, Cid-Serrano L (1999) How ubiquitous is the dipole relationship in tropical Atlantic sea surface temperatures? Journal of Geophysical Research: Oceans (1978–2012) 104(C4):7841–7848CrossRefGoogle Scholar
  19. FEWS NET (2011) Past year one of the driest on record in the eastern Horn. Famine early warning system network report, June 14, 2011, U.S. Agency for International Development, Washington, DCGoogle Scholar
  20. Fox-Rabinovitz M, Côté J, Dugas B, Déqué M, McGregor JL (2006) Variable resolution general circulation models: Stretched-grid model intercomparison project (SGMIP). J Geophys Res 111:D16104. doi:10.1029/2005JD006520 CrossRefGoogle Scholar
  21. Giorgi F, Mearns LO (1991) Approaches to the simulation of regional climate change: a review. Rev Geophys 29(2):191–216CrossRefGoogle Scholar
  22. Giorgi F, Mearns LO (1999) Introduction to special section: regional climate modeling revisited. J Geophys Res Atmos (1984–2012) 104(6):6335–6352CrossRefGoogle Scholar
  23. Giorgi F, Christensen J, Hulme M, Von Storch H, Whetton P, Jones R, Mearns L, Semazzi F (2001) Regional climate information-evaluation and projections. In: Houghton JT et al (eds) Climate change 2001: the scientific basis. Contribution of working group to the third assessment report of the intergovernmental panel on climate change. Cambridge University Press, CambridgeGoogle Scholar
  24. Giorgi F, Jones C, Asrar GR (2009) Addressing climate information needs at the regional level: the CORDEX framework. World Meteorol Organ (WMO) Bull 58(3):175Google Scholar
  25. Gissila T, Black E, Grimes DIF, Slingo JM (2004) Seasonal forecasting of the Ethiopian summer rains. Int J Climatol 24(11):1345–1358CrossRefGoogle Scholar
  26. Hastenrath S (2007) Circulation mechanisms of climate anomalies in East Africa and the equatorial Indian Ocean. Dyn Atmos Oceans 43(1):25–35CrossRefGoogle Scholar
  27. Hauke J, Kossowski T (2011) Comparison of values of Pearson’s and Spearman’s correlation coefficients on the same sets of data. Quaest Geogr 30(2):87–93Google Scholar
  28. Hewitson B, Crane R (1996) Climate downscaling: techniques and application. Clim Res 7:85–95. doi:10.3354/cr007085 CrossRefGoogle Scholar
  29. Indeje M, Semazzi FH, Ogallo LJ (2000) ENSO signals in East African rainfall seasons. Int J Climatol 20(1):19–46CrossRefGoogle Scholar
  30. Intergovernmental Panel on Climate Change (IPCC) (2007) Climate change 2007-the physical science basis: Working group I contribution to the fourth assessment report of the IPCC (S Solomon et al (eds)). Cambridge University PressGoogle Scholar
  31. Intergovernmental Panel on Climate Change (IPCC) (2013) Climate change 2013: the physical science basis. In: Contribution of working group i to the fifth assessment report of the intergovernmental panel on climate change, T F Stocker, D Qin, G-K Plattner, M Tignor, S K Allen, J Boschung, et al (eds) (Cambridge, New York: Cambridge University Press), p 1535Google Scholar
  32. Kalognomou EA, Lennard C, Shongwe M, Pinto I, Favre A, Kent M, Büchner M (2013) A diagnostic evaluation of precipitation in CORDEX models over Southern Africa. J Clim 26:9477–9506. doi:10.1175/JCLI-D-12-00703.1 CrossRefGoogle Scholar
  33. Kijazi AL, Reason CJC (2005) Relationships between intraseasonal rainfall variability of coastal Tanzania and ENSO. Theor appl climatol 82(3–4):153–176CrossRefGoogle Scholar
  34. Kim J, Waliser DE, Mattmann CA, Goodale CE, Hart AF, Zimdars PA, Favre A (2014) Evaluation of the CORDEX-Africa multi-RCM hindcast: systematic model errors. Clim dyna 42(5-6):1189–1202CrossRefGoogle Scholar
  35. Kosaka Y, Xie SP (2013) Recent global-warming hiatus tied to equatorial Pacific surface cooling. Nature 501(7467):403–407CrossRefGoogle Scholar
  36. Langenbrunner B, Neelin JD (2013) Analyzing enso teleconnections in cmip models as a measure of model fidelity in simulating precipitation. J Clim 26:4431–4446. doi:10.1175/JCLI-D-12-00542.1 CrossRefGoogle Scholar
  37. Latif M, Dommenget D, Dima M, Grötzner A (1999) The role of Indian Ocean sea surface temperature in forcing east African rainfall anomalies during December-January 1997/98. J Clim 12(12):3497–3504CrossRefGoogle Scholar
  38. Liebmann B, Bladé I, Kiladis GN, Carvalho LMV, Senay GB, Allured D, Funk C (2012) Seasonality of African precipitation from 1996 to 2009. J Clim 25:4304–4322. doi:10.1175/JCLI-D-11-00157.1 CrossRefGoogle Scholar
  39. Mason SJ, Goddard L (2001) Probabilistic precipitation anomalies associated with ENSO. Bull Am Meteorol Soc 82(4):619–638CrossRefGoogle Scholar
  40. Murtagh F (1985) Multidimensional clustering algorithms. In: Chambers JM, Gordesch J, Klas A, Lebart L, Sint PP (eds)Compstat lectures, Würzburg: Physica-Verlag, ViennaGoogle Scholar
  41. Nicholson SE, Kim J (1997) The relationship of the El Nino-Southern oscillation to African rainfall. Int J Climatol 17(2):117–135CrossRefGoogle Scholar
  42. Nikulin G, Jones C, Giorgi F, Asrar G, Büchner M, Cerezo-Mota R, Hänsler A, Sushama L (2012) Precipitation climatology in an ensemble of CORDEX-Africa regional climate simulations. J Clim 25(18):6057–6078CrossRefGoogle Scholar
  43. Ogallo LJ (1988) Relationships between seasonal rainfall in East Africa and the Southern oscillation. J Climatol 8(1):31–43CrossRefGoogle Scholar
  44. Paeth H, Hall NM, Gaertner MA, Alonso MD, Moumouni S, Polcher J, Ruti PM, Rummukainen M (2011) Progress in regional downscaling of West African precipitation. Atmos Sci Lett 12(1):75–82CrossRefGoogle Scholar
  45. Panitz HJ, Dosio A, Büchner M, Lüthi D, Keuler K (2014) COSMO-CLM (CCLM) climate simulations over CORDEX-Africa domain: analysis of the ERA-Interim driven simulations at 0.44 and 0.22 resolution. Clim Dyn 42(11–12):3015–3038CrossRefGoogle Scholar
  46. Reynolds RW, Rayner NA, Smith TM, Stokes DC, Wang WQ (2002) An improved in situ and satellite SST analysis for climate. J Clim 15:1609–1625CrossRefGoogle Scholar
  47. Ropelewski CF, Halpert MS (1987) Global and regional scale precipitation patterns associated with the El Niño/Southern Oscillation. Mon Weather Rev 115(8):1606–1626CrossRefGoogle Scholar
  48. Rowell DP (2013) Simulating SST teleconnections to Africa: What is the state of the art?. J Clim 26(15):5397–5418CrossRefGoogle Scholar
  49. Rudolf B, Becker A, Schneider U, Meyer-Christoffer A, Ziese M (2010) The new “GPCC full data reanalysis version 5” providing high-quality gridded monthly precipitation data for the global land-surface is public available since December 2010. GPCC status report DecemberGoogle Scholar
  50. Rummukainen M (2010) State-of-the-art with regional climate models. Wiley Interdiscip Rev Clim Change 1(1):82–96CrossRefGoogle Scholar
  51. Saji NH, Goswami BN, Vinayachandran PN, Yamagata T (1999) A dipole mode in the tropical Indian Ocean. Nature 401(6751):360–363Google Scholar
  52. Samuelsson P, Jones CG, Willén U, Ullerstig A, Gollvik S, Hansson U, Kjellström E, Nikulin G, Wyser K (2011) The Rossby centre regional climate model RCA3: model description and performance. Tellus A 63:4–23CrossRefGoogle Scholar
  53. Segele ZT, Lamb PJ (2005) Characterization and variability of Kiremt rainy season over Ethiopia. Meteorol Atmos Phys 89(1–4):153–180CrossRefGoogle Scholar
  54. Segele ZT, Lamb PJ, Leslie LM (2009a) Large-scale atmospheric circulation and global sea surface temperature associations with Horn of Africa June–September rainfall. Int J Climatol 29(8):1075–1100CrossRefGoogle Scholar
  55. Segele ZT, Leslie LM, Lamb PJ (2009b) Evaluation and adaptation of a regional climate model for the Horn of Africa: rainfall climatology and interannual variability. Int J Climatol 29(1):47–65CrossRefGoogle Scholar
  56. Slim H (2012) IASC real-time evaluation of the humanitarian response to the horn of africa drought crisis in Somalia, Ethiopia and Kenya. Available from: http://reliefweb.int/sites/reliefweb.int/files/resources/RTE_HoA_SynthesisReport_FINAL.pdf
  57. Sylla MB, Gaye AT, Pal JS, Jenkins GS, Bi XQ (2009) High-resolution simulations of West African climate using regional climate model (RegCM3) with different lateral boundary conditions. Theoret Appl Climatol 98(3–4):293–314CrossRefGoogle Scholar
  58. Taylor KE (2001) Summarizing multiple aspects of model performance in a single diagram. J Geophys Res 106(D7):7183–7192CrossRefGoogle Scholar
  59. Taylor KE, Stouffer RJ, Meehl GA (2012) An overview of CMIP5 and the experiment design. Bull Am Meteorol Soc 93(4):485–498CrossRefGoogle Scholar
  60. Tourigny E, Jones CG (2009) An analysis of regional climate model performance over the tropical Americas. Part I: simulating seasonal variability of precipitation associated with ENSO forcing. Tellus A 61(3):323–342CrossRefGoogle Scholar
  61. Ummenhofer CC, Sen Gupta A, England MH, Reason CJ (2009) Contributions of Indian Ocean sea surface temperatures to enhanced East African rainfall. J Clim 22(4):993–1013CrossRefGoogle Scholar
  62. United Nations Office for the Coordination of Humanitarian Affairs (UNOCHA) (2011) Eastern Africa drought humanitarian report 4, 15 July, New York, NYGoogle Scholar
  63. Wang Y, Leung LR, McGREGOR JL, Lee DK, Wang WC, Ding Y, Kimura F (2004) Regional climate modeling: progress, challenges, and prospects. J Meteorol Soc Jpn 82:1599–1628CrossRefGoogle Scholar
  64. Yang SC, Keppenne C, Rienecker M, Kalnay E (2009) Application of coupled bred vectors to seasonal-to-interannual forecasting and ocean data assimilation. J Clim 22(11):2850–2870CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  1. 1.Climate System Analysis GroupUniversity of Cape TownCape TownSouth Africa
  2. 2.European Commission Joint Research CentreInstitute for Environment and SustainabilityIspraItaly
  3. 3.Rossby CentreSwedish Meteorological and Hydrological InstituteNorrköpingSweden
  4. 4.Karlsruher Institut für TechnologieInstitut für Meteorologie und KlimaforschungKarlsruheGermany

Personalised recommendations