Advertisement

Climate Dynamics

, Volume 46, Issue 9–10, pp 2717–2735 | Cite as

Detection of anthropogenic influence on the evolution of record-breaking temperatures over Europe

  • Margot BadorEmail author
  • Laurent Terray
  • Julien Boé
Article

Abstract

Changes in temperature extreme events are expected as a result of anthropogenic climate change, but uncertainties exist in when and how these changes will be manifest regionally. This is especially the case over Europe due to different methodologies and definitions of temperature extreme events. An alternative approach is to examine changes in record-breaking temperatures. Datasets of observed temperature combined with ensembles of climate model simulations are used to assess the possible causes and significance of record-breaking temperature changes over the late twentieth and twenty-first centuries. A simple detection methodology is first applied to evaluate the extent to which the effect of anthropogenic forcing can be detected in present-day observed and simulated changes in record-breaking temperature. We then study the projected evolution of record-breaking daily minimum and maximum temperatures over the twenty-first century in Europe with a climate model. The same detection approach is used to identify the time of emergence of the anthropogenic signal relative to a model-derived estimate of internal variability. From the 1980s onwards, a change in the evolution of cold and warm records is observed and simulated, but it still remains in the range of internal variability until the end of the twentieth century. Minimum and maximum record-breaking temperatures tend to occur (respectively) less and more often than during the 1960s and 1970s taken as representative of a stationary climate. Model simulations with natural forcing only fail to reproduce the observed changes after the 1980s while the latter are compatible with simulations constrained by anthropogenic forcings. The deviation from the characteristic behavior of a stationary climate record-wise initiated in the 1980s is projected to accentuate during the twenty-first century. Annual changes become inconsistent with the model-derived internal variability between the 2020s and 2030s. Over the last three decades of the twenty-first century and under the RCP8.5 scenario, warm records occur on average five times more often than initially. Conversely, breaking new cold record become extremely difficult. The Mediterranean region is particularly affected in summer, whereas central and northeastern Europe is more impacted in winter.

Keywords

Temperature record-breaking statistics Detection Internal variability Extreme events Climate change 

Notes

Acknowledgments

This work is supported by EDF and by the French National Research Agency (ANR) and its program «Investissements d’avenir» under the Grant ANR-11-RSNR-0021. The authors thank Aurelien Ribes and Julien Cattiaux for their very helpful suggestions. All analyses and graphics have been done using the NCAR Command Language (NCL 2013).

References

  1. Anderson A, Kostinski A (2010) Reversible record breaking and variability: temperature distributions across the globe. J Appl Meteorol Climatol 49(8):1681–1691. doi: 10.1175/2010JAMC2407.1 CrossRefGoogle Scholar
  2. Barriopedro D, Fischer EM, Luterbacher J, Trigo RM, García-Herrera R (2011) The hot summer of 2010: redrawing the temperature record map of Europe. Science (New York, N.Y.) 332(6026):220–224. doi: 10.1126/science.1201224 CrossRefGoogle Scholar
  3. Benestad RE (2003) How often can we expect a record event ? Clim Res 25:3–13CrossRefGoogle Scholar
  4. Benestad RE (2004) Record-values, nonstationary tests and extreme value distributions. Glob Planet Change 44(1–4):11–26. doi: 10.1016/j.gloplacha.2004.06.002 CrossRefGoogle Scholar
  5. Boé J, Terray L (2008) Uncertainties in summer evapotranspiration changes over Europe and implications for regional climate change. Geophys Res Lett 35(5):L05702. doi: 10.1029/2007GL032417 CrossRefGoogle Scholar
  6. Christiansen B (2013) Changes in temperature records and extremes: are they statistically significant? J Clim 26(20):7863–7875. doi: 10.1175/JCLI-D-12-00814.1 CrossRefGoogle Scholar
  7. Coumou D, Rahmstorf S (2012) A decade of weather extremes. Nat Clim Change. doi: 10.1038/NCLIMATE1452 Google Scholar
  8. Coumou D, Robinson A, Rahmstorf S (2013) Global increase in record-breaking monthly-mean temperatures. Clim Change 118(3–4):771–782. doi: 10.1007/s10584-012-0668-1 CrossRefGoogle Scholar
  9. Della-Marta PM, Haylock MR, Luterbacher J, Wanner H (2007) Doubled length of western European summer heat waves since 1880. J Geophys Res 112(D15):D15103. doi: 10.1029/2007JD008510 CrossRefGoogle Scholar
  10. Elguindi N, Rauscher SA, Giorgi F (2012) Historical and future changes in maximum and minimum temperature records over Europe. Clim Change 117(1–2):415–431. doi: 10.1007/s10584-012-0528-z Google Scholar
  11. Fischer EM, Rajczak J, Schär C (2012) Changes in European summer temperature variability revisited. Geophys Res Lett. doi: 10.1029/2012GL052730 Google Scholar
  12. Franke J, Wergen G, Krug J (2010) Records and sequences of records from random variables with a linear trend. J Stat Mech. doi: 10.1088/1742-5468/2010/10/P10013 Google Scholar
  13. Gupta AS, Jourdain NC, Brown JN, Monselesan D (2013) Climate drift in the CMIP5 models*. J Clim 26(21):8597–8615. doi: 10.1175/JCLI-D-12-00521.1 CrossRefGoogle Scholar
  14. Hansen J, Sato M, Ruedy R (2012) Perception of climate change. Proc Natl Acad Sci USA 109(37):E2415–E2423. doi: 10.1073/pnas.1205276109 CrossRefGoogle Scholar
  15. Haylock MR, Hofstra N, Klein Tank AMG, Klok EJ, Jones PD, New M (2008) A European daily high-resolution gridded data set of surface temperature and precipitation for 1950–2006. J Geophys Res 113(D20):D20119. doi: 10.1029/2008JD010201 CrossRefGoogle Scholar
  16. IPCC (2007) Climate change 2007: the physical science basis. In: Solomon S, Qin D, Manning M, Chen Z, Marquis M, Averyt KB, Tignor M, Miller HL (eds) Contribution of Working Group I to the fourth assessment report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, United Kingdom and New York, NY, 996 ppGoogle Scholar
  17. IPCC (2012) Managing the risks of extreme events and disasters to advance climate change adaptation. In: Field CB, Barros V, Stocker TF, Qin D, Dokken DJ, Ebi KL, Mastrandrea MD, Mach KJ, Plattner GK, Allen SK, Tignor M, Midgley PM (eds) A special report of Working Groups I and II of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, UK, and New York, NY, 582 ppGoogle Scholar
  18. IPCC (2013) Climate change 2013: the physical science basis. In: Stocker TF, Qin D, Plattner G-K, Tignor M, Allen SK, Boschung J, Nauels A, Xia Y, Bex V, Midgley PM (eds) Contribution of Working Group I to the fifth assessment report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, United Kingdom and New York, NY, 1535 ppGoogle Scholar
  19. Katz RW, Brown BG (1992) Extreme events in a changing climate: variability is more important than averages. Clim Change 21:289–302CrossRefGoogle Scholar
  20. Krug J (2007) Records in a changing world. J Stat Mech Theory Exp 2007(07):P07001–P07001. doi: 10.1088/1742-5468/2007/07/P07001 CrossRefGoogle Scholar
  21. Meehl GA, Tebaldi C, Walton G, Easterling D, McDaniel L (2009) Relative increase of record high maximum temperatures compared to record low minimum temperatures in the US. Geophys Res Lett 36(23):L23701. doi: 10.1029/2009GL040736 CrossRefGoogle Scholar
  22. NCL (2013) The NCAR command language (Version 6.1.2) [Software]. UCAR/NCAR/CISL/VETS, Boulder, Colorado. doi: 10.5065/D6WD3XH5 Google Scholar
  23. Newman WI, Malamud BD, Turcotte DL (2010) Statistical properties of record-breaking temperatures. Phys Rev E 82(6):066111. doi: 10.1103/PhysRevE.82.066111 CrossRefGoogle Scholar
  24. Parey S, Dacunha-Castelle D, Hoang TTH (2009) Mean and variance evolutions of the hot and cold temperatures in Europe. Clim Dyn 34(2–3):345–359. doi: 10.1007/s00382-009-0557-0 Google Scholar
  25. Peters GP, Andrew RM, Boden T, Canadell JG, Ciais P, Le Quéré C, Marland G, Raupach MR, Wilson C (2012) The challenge to keep global warming below 2°C. Nat Clim Change 3(1):4–6. doi: 10.1038/nclimate1783 CrossRefGoogle Scholar
  26. Rahmstorf S, Coumou D (2011) Increase of extreme events in a warming world. Proc Natl Acad Sci USA 108(44):17905–17909. doi: 10.1073/pnas.1101766108 CrossRefGoogle Scholar
  27. Redner S, Petersen M (2006) Role of global warming on the statistics of record-breaking temperatures. Phys Rev E 74(6):061114. doi: 10.1103/PhysRevE.74.061114 CrossRefGoogle Scholar
  28. Robine J-M, Cheung SLK, Le Roy S, Van Oyen H, Griffiths C, Michel J-P, Herrmann FR (2008) Death toll exceeded 70,000 in Europe during the summer of 2003. CR Biol 331(2):171–178. doi: 10.1016/j.crvi.2007.12.001 CrossRefGoogle Scholar
  29. Ruokolainen L, Räisänen J (2009) How soon will climate records of the 20th century be broken according to climate model simulations? Tellus A 61(4):476–490. doi: 10.1111/j.1600-0870.2009.00398.x CrossRefGoogle Scholar
  30. Schär C, Vidale PL, Lüthi D, Frei C, Häberli C, Liniger MA, Appenzeller C (2004) The role of increasing temperature variability in European summer heatwaves. Nature 427(January):3926–3928. doi: 10.1038/nature02230.1 Google Scholar
  31. Scherrer SC, Apenzeller C, Liniger MA, Schär C (2005) European temperature distribution changes in observations and climate change scenarios. Geophys Res Lett 32(19):L19705. doi: 10.1029/2005GL024108 CrossRefGoogle Scholar
  32. Seneviratne SI, Lüthi D, Litschi M, Schär C (2006) Land–atmosphere coupling and climate change in Europe. Nature 443(7108):205–209. doi: 10.1038/nature05095 CrossRefGoogle Scholar
  33. Shindell DT, Schmidt GA (2004) Dynamic winter climate response to large tropical volcanic eruptions since 1600. J Geophys Res 109(D5):D05104. doi: 10.1029/2003JD004151 Google Scholar
  34. Terray L, Boé J (2013) Quantifying 21st-century France climate change and related uncertainties. CR Geosci 345(3):136–149. doi: 10.1016/j.crte.2013.02.003 CrossRefGoogle Scholar
  35. Trewin B, Vermont H (2010) Changes in the frequency of record temperatures in Australia, 1957–2009. Aust Meteorol Oceanogr J 60:113–119Google Scholar
  36. Van Vuuren DP, Eickhout B, Lucas PL, den Elzen MGJ (2006) Long-term multi-gas scenarios to stabilise radiative forcing: exploring costs and benefits within an integrated assessment framework. Energy J SI2006(01):201234. doi: 10.5547/ISSN0195-6574-EJ-VolSI2006-NoSI3-10 Google Scholar
  37. Van Vuuren DP, Elzen MGJ, Lucas PL, Eickhout B, Strengers BJ, Ruijven B, Houdt R (2007) Stabilizing greenhouse gas concentrations at low levels: an assessment of reduction strategies and costs. Clim Change 81(2):119159. doi: 10.1007/s10584-006-9172-9 Google Scholar
  38. Voldoire A, Sanchez-Gomez E, Salas y Mélia D, Decharme B, Cassou C, Sénési S, Valcke S, Chauvin F (2012) The global climate model: description and basic evaluation. Clim Dyn 40(9–10):2091–2121. doi: 10.1007/s00382-011-1259-y Google Scholar
  39. Wergen G, Krug J (2010) Record-breaking temperatures reveal a warming climate. EPL (Europhys Lett) 92(3):30008. doi: 10.1209/0295-5075/92/30008 CrossRefGoogle Scholar
  40. Wergen G, Hense A, Krug J (2014) Record occurrence and record values in daily and monthly. Clim Dyn 42(5–6):1275–1289CrossRefGoogle Scholar
  41. Wigley TML (2000) ENSO, volcanoes and record-breaking temperatures. Geophys Res Lett 27(24):4101–4104. doi: 10.1029/2000GL012159 CrossRefGoogle Scholar
  42. Wild M (2011) Enlightening global dimming and brightening. Bull Am Meteorol Soc 93(1):27–37. doi: 10.1175/BAMS-D-11-00074.1 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  1. 1.Climate Modelling and Global Change TeamURA1875 CNRS/CERFACSToulouseFrance

Personalised recommendations