Climate Dynamics

, Volume 46, Issue 7–8, pp 2197–2211 | Cite as

Comparison of wintertime mesoscale winds over the ocean around southeastern Greenland in WRF and ERA-Interim

Article

Abstract

Strong, mesoscale tip jets and barrier winds that occur over the ocean near southern Greenland have the potential for impacting deep convection in the ocean. The self-organizing map (SOM) training algorithm was used to identify and classify the range of 10 m wind patterns present during ten winters (1997–2007, NDJFM) in the ECMWF interim reanalysis (ERA-I) and from a regional simulation using the weather research and forecasting (WRF) model at 50 km into a SOM. The SOM is used to identify differences in the manifestation of westerly tip jets, easterly tip jets, and barrier flow. The North Atlantic Oscillation (NAO) index is well correlated with the type of tip jet present at Cape Farewell, but the NAO was not well correlated with the absence or presence of barrier flow. WRF simulated patterns with strong barrier-parallel flow more frequently than ERA-I, and WRF also had faster coastal winds than ERA-I during all types of strong wind events. The difference in coastal winds is likely related to model resolution and the resulting ability of each model to simulate strong mesoscale winds that are driven by Greenland’s steep terrain.

Keywords

Greenland Tip-jet Barrier wind Regional climate model Reanalyses Self-organizing maps 

References

  1. Abdalla S, Isaksen L, Janssen PAE, Wedi N (2013) Effective spectral resolution of ECMWF atmospheric forecast models. ECMWF Newsl 137:19–22Google Scholar
  2. Bacon S, Gould WJ, Jia Y (2003) Open-ocean convection in the Irminger Sea. Geophys Res Lett. doi:10.1029/2002GL016271 Google Scholar
  3. Bakalian F, Hameed S, Pickart RS (2007) Influence of the Icelandic Low latitude on the frequency of Greenland tip jet events: implications for Irminger Sea convection. J Geophys Res Atmos. doi:10.1029/2006JC003807 Google Scholar
  4. Bromwich D, Kuo Y-H, Serreze M, Walsh J, Bai L-S, Barlage M, Hines K, Slater A (2010) Arctic system reanalysis: call for community involvement. Eos Trans Am Geophys Union 91:13–14. doi:10.1029/2010EO020001 CrossRefGoogle Scholar
  5. Cassano JJ, Uotila P, Lynch AH, Cassano EN (2007) Predicted changes in synoptic forcing of net precipitation in large Arctic river basins during the 21st century. J Geophys Res Biogeosci. doi:10.1029/2006JG000332 Google Scholar
  6. Cassano J, Higgins M, Seefeldt M (2011) Performance of the weather research and forecasting (WRF) model for month-long pan-Arctic simulations. Mon Weather Rev. doi:10.1175/MWR-D-10-05065.1 Google Scholar
  7. Cassano EN, Glisan JM, Cassano JJ, Jr WJG, Seefeldt MW (2015) Self-organizing map analysis of widespread temperature extremes in Alaska and Canada. Clim Res 62(3):199–218. doi:10.3354/cr01274 CrossRefGoogle Scholar
  8. Chen F, Dudhia J (2001) Coupling an advanced land surface-hydrology model with the Penn State-NCAR MM5 modeling system. Part I: model implementation and sensitivity. Mon Weather Rev 129:569–585. doi:10.1175/1520-0493(2001)129<0569:CAALSH>2.0.CO;2 CrossRefGoogle Scholar
  9. Collins WD et al (2004) Description of the NCAR community atmosphere model (CAM 3.0). NCAR tech. Note NCAR/TN-464+ STR, 226Google Scholar
  10. Comiso J (1999) Bootstrap sea ice concentrations from Nimbus-7 SMMR and DMSP SSM/I, [Jan-Mar 2007]. http://nsidc.org/data/docs/daac/nsidc0079_bootstrap_seaice.gd.html. Accessed 11 Sept 2011
  11. Condron A, Renfrew IA (2013) The impact of polar mesoscale storms on northeast Atlantic Ocean circulation. Nat Geosci 6:34–37. doi:10.1038/ngeo1661 Google Scholar
  12. Dee DP et al (2011) The ERA-interim reanalysis: configuration and performance of the data assimilation system. Q J R Meteorol Soc 137:553–597. doi:10.1002/qj.828 CrossRefGoogle Scholar
  13. Doyle JD, Shapiro MA (1999) Flow response to large-scale topography: the Greenland tip jet. Tellus A 51:728–748CrossRefGoogle Scholar
  14. DuVivier AK, Cassano JJ (2013) Evaluation of WRF model resolution on simulated mesoscale winds and surface fluxes near Greenland. Mon Weather Rev 141:941–963. doi:10.1175/MWR-D-12-00091.1 CrossRefGoogle Scholar
  15. Dyer AJ, Hicks BB (1970) Flux-gradient relationships in the constant flux layer. Q J R Meteorol Soc 96:715–721. doi:10.1002/qj.49709641012 CrossRefGoogle Scholar
  16. Glisan JM, Gutowski WJ, Cassano JJ, Higgins ME (2012) Effects of spectral nudging in WRF on Arctic temperature and precipitation simulations. J Clim 26(12):3985–3999. doi:10.1175/JCLI-D-12-00318.1 CrossRefGoogle Scholar
  17. Grell GA, Dévényi D (2002) A generalized approach to parameterizing convection combining ensemble and data assimilation techniques. Geophys Res Lett 29:38. doi:10.1029/2002GL015311 CrossRefGoogle Scholar
  18. Harden BE, Renfrew IA (2012) On the spatial distribution of high winds off southeast Greenland. Geophys Res Lett 39:L14806. doi:10.1029/2012GL052245 Google Scholar
  19. Harden BE, Renfrew IA, Petersen GN (2011) A climatology of wintertime barrier winds off southeast Greenland. J Clim 24:4701–4717. doi:10.1175/2011JCLI4113.1 CrossRefGoogle Scholar
  20. Hewitson BC, Crane RG (2002) Self-organizing maps: applications to synoptic climatology. Clim Res 22:13–26. doi:10.3354/cr022013 CrossRefGoogle Scholar
  21. Higgins ME, Cassano JJ (2009) Impacts of reduced sea ice on winter Arctic atmospheric circulation, precipitation, and temperature. J Geophys Res Atmos. doi:10.1029/2009JD011884 Google Scholar
  22. Holton JR (2004) An introduction to dynamic meteorology, 4th edn. Elsevier Academic Press, BurlingtonGoogle Scholar
  23. Hong S-Y, Noh Y, Dudhia J (2006) A new vertical diffusion package with an explicit treatment of entrainment processes. Mon Weather Rev 134:2318–2341. doi:10.1175/MWR3199.1 CrossRefGoogle Scholar
  24. Hughes M, Cassano JJ (2015) The climatalogical distribution of extreme Arctic winds, and implications for ocean and sea ice processes. J Geophys Res (in review)Google Scholar
  25. Hunke EC (2010) Thickness sensitivities in the CICE sea ice model. Ocean Model 34:137–149. doi:10.1016/j.ocemod.2010.05.004 CrossRefGoogle Scholar
  26. Hunke EC, Holland MM (2007) Global atmospheric forcing data for Arctic ice-ocean modeling. J Geophys Res 112:C04S14. doi:10.1029/2006JC003640 CrossRefGoogle Scholar
  27. Jung T, Serrar S, Wang Q (2014) The oceanic response to mesoscale atmospheric forcing. Geophys Res Lett. doi:10.1002/2013GL059040 Google Scholar
  28. Kohonen T (2001) Self-organizing maps, 3rd edn. Springer, New YorkCrossRefGoogle Scholar
  29. Kolstad E (2008) A QuikSCAT climatology of ocean surface winds in the Nordic seas: identification of features and comparison with the NCEP/NCAR reanalysis. J Geophys Res 113:D11106. doi:10.1029/2007JD008918 CrossRefGoogle Scholar
  30. Kwok R, Hunke EC, Maslowski W, Menemenlis D, Zhang J (2008) Variability of sea ice simulations assessed with RGPS kinematics. J Geophys Res 113:C11012. doi:10.1029/2008JC004783 CrossRefGoogle Scholar
  31. Lindsay R, Wensnahan M, Schweiger A, Zhang J (2014) Evaluation of seven different atmospheric reanalysis products in the Arctic*. J Clim 27:2588–2606. doi:10.1175/JCLI-D-13-00014.1 CrossRefGoogle Scholar
  32. Lisæter KA, Evensen G, Laxon S (2007) Assimilating synthetic CryoSat sea ice thickness in a coupled ice-ocean model. J Geophys Res Oceans. doi:10.1029/2006JC003786 Google Scholar
  33. Martin R, Moore GWK (2007) Air–sea interaction associated with a Greenland reverse tip jet. Geophys Res Lett. doi:10.1029/2007GL031093 Google Scholar
  34. Moore GWK (2003) Gale force winds over the Irminger Sea to the east of Cape Farewell. Geophys Res Lett, Greenland. doi:10.1029/2003GL018012 Google Scholar
  35. Moore GWK (2012) A new look at Greenland flow distortion and its impact on barrier flow, tip jets and coastal oceanography. Geophys Res Lett 39:L22806. doi:10.1029/2012GL054017 Google Scholar
  36. Moore GWK (2014) Mesoscale structure of Cape Farewell tip jets. J Clim 27:8956–8965. doi:10.1175/JCLI-D-14-00299.1 CrossRefGoogle Scholar
  37. Moore G, Renfrew I (2005) Tip jets and barrier winds: a QuikSCAT climatology of high wind speed events around Greenland. J Clim 18:3713–3725. doi:10.1175/JCLI3455.1 CrossRefGoogle Scholar
  38. Moore GWK, Renfrew IA (2014) A new look at southeast Greenland barrier winds and katabatic flow. US CLIVAR VARIATIONS, 12. http://www.usclivar.org/newsletter/newsletters. Accessed 25 June 2014
  39. Moore GWK, Pickart RS, Renfrew IA (2011) Complexities in the climate of the subpolar North Atlantic: a case study from the winter of 2007. Q J R Meteorol Soc 137:757–767. doi:10.1002/qj.778 CrossRefGoogle Scholar
  40. NOAA-CPC, NOAA-Climate Prediction Center (2013) http://www.cpc.ncep.noaa.gov/products/precip/CWlink/ENSO/verf/new.nao.shtml#publication. Accessed 20 June 2013
  41. Oltmanns M, Straneo F, Moore GWK, Mernild SH (2014) Strong downslope wind events in Ammassalik, southeast Greenland. J Clim 27:977–993. doi:10.1175/JCLI-D-13-00067.1 CrossRefGoogle Scholar
  42. Outten SD, Renfrew IA, Petersen GN (2009) An easterly tip jet off Cape Farewell, Greenland. II: simulations and dynamics. Q J R Meteorol Soc 135:1934–1949. doi:10.1002/qj.531 CrossRefGoogle Scholar
  43. Paulson CA (1970) The mathematical representation of wind speed and temperature profiles in the unstable atmospheric surface layer. J Appl Meteorol 9:857–861. doi:10.1175/1520-0450(1970)009<0857:TMROWS>2.0.CO;2 CrossRefGoogle Scholar
  44. Petersen GN, Renfrew IA (2009) Aircraft-based observations of air-sea fluxes over Denmark Strait and the Irminger Sea during high wind speed conditions. Q J R Meteorol Soc 135:2030–2045. doi:10.1002/qj.355 CrossRefGoogle Scholar
  45. Pickart RS, Spall MA, Ribergaard MH, Moore G, Milliff RF (2003) Deep convection in the Irminger Sea forced by the Greenland tip jet. Nature 424:152–156. doi:10.1038/nature01729 CrossRefGoogle Scholar
  46. Renfrew IA, Petersen GN, Sproson DAJ, Moore GWK, Adiwidjaja H, Zhang S, North R (2009) A comparison of aircraft-based surface-layer observations over Denmark Strait and the Irminger Sea with meteorological analyses and QuikSCAT winds. Q J R Meteorol Soc 135:2046–2066. doi:10.1002/qj.444 CrossRefGoogle Scholar
  47. Reusch DB, Alley RB, Hewitson BC (2005) Relative performance of self-organizing maps and principal component analysis in pattern extraction from synthetic climatological data. Polar Geogr 29:188–212. doi:10.1080/789610199 CrossRefGoogle Scholar
  48. Sheridan SC, Lee CC (2011) The self-organizing map in synoptic climatological research. Prog Phys Geogr 35:109–119. doi:10.1177/0309133310397582 CrossRefGoogle Scholar
  49. Shkolnik IM, Efimov SV (2013) Cyclonic activity in high latitudes as simulated by a regional atmospheric climate model: added value and uncertainties. Environ Res Lett 8:045007. doi:10.1088/1748-9326/8/4/045007 CrossRefGoogle Scholar
  50. Skamarock WC (2004) Evaluating mesoscale NWP models using kinetic energy spectra. Mon Weather Rev 132:3019–3032. doi:10.1175/MWR2830.1 CrossRefGoogle Scholar
  51. Skamarock WC et al (2008) A description of the advanced research WRF version 3 (NCAR technical note). NCAR: Mesoscale and Microscale Meteorology DivisionGoogle Scholar
  52. Spall MA, Pickart RS (2003) Wind-driven recirculations and exchange in the labrador and Irminger Seas. J Phys Oceanogr 33:1829–1845. doi:10.1175/2384.1 CrossRefGoogle Scholar
  53. Sproson DAJ, Renfrew IA, Heywood KJ (2008) Atmospheric conditions associated with oceanic convection in the south-east Labrador sea. Geophys Res Lett. doi:10.1029/2007GL032971 Google Scholar
  54. Tao W-K, Simpson J (1993) Goddard cumulus ensemble model. Part I: model description. Terr Atmos Ocean Sci 4:35–71Google Scholar
  55. Tilinina N, Gulev SK, Bromwich DH (2014) New view of Arctic cyclone activity from the Arctic system reanalysis. Geophys Res Lett. doi:10.1002/2013GL058924 Google Scholar
  56. Våge K, Pickart RS, Thierry V, Reverdin G, Lee CM, Petrie B, Agnew TA, Wong A, Ribergaard MH (2008a) Surprising return of deep convection to the subpolar North Atlantic Ocean in winter 2007–2008. Nat Geosci 2:67–72. doi:10.1038/ngeo382 CrossRefGoogle Scholar
  57. Våge K, Pickart RS, Moore GWK, Ribergaard MH (2008b) Winter mixed layer development in the central Irminger Sea: the effect of strong, intermittent wind events. J Phys Oceanogr 38:541–565. doi:10.1175/2007JPO3678.1 CrossRefGoogle Scholar
  58. Våge K, Spengler T, Davies HC, Pickart RS (2009) Multi-event analysis of the westerly Greenland tip jet based upon 45 winters in ERA-40. Q J R Meteorol Soc 135:1999–2011. doi:10.1002/qj.488 CrossRefGoogle Scholar
  59. Våge K et al (2011) The Irminger Gyre: circulation, convection, and interannual variability. Deep Sea Res Part I 58:590–614. doi:10.1016/j.dsr.2011.03.001 CrossRefGoogle Scholar
  60. Webb EK (1970) Profile relationships: the log-linear range, and extension to strong stability. Q J R Meteorol Soc 96:67–90. doi:10.1002/qj.49709640708 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  1. 1.Cooperative Institute for Research in Environmental SciencesBoulderUSA
  2. 2.Department of Atmospheric and Oceanic SciencesUniversity of ColoradoBoulderUSA

Personalised recommendations