Advertisement

Climate Dynamics

, Volume 46, Issue 5–6, pp 1921–1942 | Cite as

Model-dependent spatial skill in pseudoproxy experiments testing climate field reconstruction methods for the Common Era

  • Jason E. Smerdon
  • Sloan Coats
  • Toby R. Ault
Article

Abstract

The spatial skill of four climate field reconstruction (CFR) methods is investigated using pseudoproxy experiments (PPEs) based on five last millennium and historical simulations from the Coupled and Paleo Model Intercomparison Projects Phases 5 and 3 (CMIP5/PMIP3) data archives. These simulations are used for the first time in a PPE context, the frameworks of which are constructed to test a recently assembled multiproxy network and multiple CFR techniques. The experiments confirm earlier findings demonstrating consistent methodological performance across the employed methods and spatially dependent reconstruction errors in all of the derived CFRs. Spectral biases in the reconstructed fields demonstrate that CFR methods can alone alter the ratio of spectral power at all locations in the field, independent of whether there are any spectral biases inherent in the underlying pseudoproxy series. The patterns of spectral biases are model dependent and indicate the potential for regions in the derived CFRs to be biased by changes in either low or high-frequency spectral power. CFR methods are also shown to alter the pattern of mean differences in the tropical Pacific during the Medieval Climate Anomaly and the Little Ice Age, with some model experiments indicating that CFR methodologies enhance the statistical likelihood of achieving larger mean differences between independent 300-year periods in the region. All of the characteristics of CFR performance are model dependent, indicating that CFR methods must be evaluated across multiple models and that conclusions from PPEs should be carefully connected to the spatial statistics of real-world climatic fields.

Keywords

Climate field reconstruction Pseudoproxy Last millennium Climate model PMIP3 CMIP5 

Notes

Acknowledgments

We are grateful for the helpful comments from the reviewer of our manuscript. Supported in part by NOAA grants NA10OAR4320137 and NA11OAR4310166. Supplementary data can be accessed at http://www.ldeo.columbia.edu/~jsmerdon/2015_clidyn_smerdonetal_supplement.html. LDEO contribution #7903.

References

  1. Ammann CM, Joos F, Schimel DS, Otto-Bliesner BL, Tomas RA (2007) Solar influence on climate during the past millennium: results from transient simulations with the NCAR Climate System Model. Proc Nat Acad Sci USA 104:3713–3718CrossRefGoogle Scholar
  2. Anchukaitis KJ, Evans MN, Kaplan A, Vaganov EA, Hughes MK, Grissino-Mayer HD, Cane MA (2006) Forward modeling of regional-scale tree-ring patterns in the southeastern United States and the recent emergence of summer drought stress. Geophys Res Lett 33(4):L04705. doi: 10.1029/2005GL025050 CrossRefGoogle Scholar
  3. Anchukaitis KJ, Buckley BM, Cook ER, Cook BI, D’Arrigo RD, Ammann CM (2010) Influence of volcanic eruptions on the climate of the Asian monsoon region. Geophys Res Lett 37:L22703. doi: 10.1029/2010GL044843 CrossRefGoogle Scholar
  4. Anchukaitis KJ, D’Arrigo RD, Andreu-Hayles L, Frank D, Verstege A, Buckley BM, Curtis A, Jacoby GC, Cook ER (2013) Tree-ring reconstructed summer temperatures from northwestern North America during the last nine centuries. J Clim 26(10):3001–3012. doi: 10.1175/JCLI-D-11-00139.1 CrossRefGoogle Scholar
  5. Annan JD, Hargreaves JC (2012) Identification of climatic state with limited proxy data. Clim Past 8:1141–1151. doi: 10.5194/cp-8-1141-2012 CrossRefGoogle Scholar
  6. Ault TR, Deser C, Newman M, Emile-Geay J (2013a) Characterizing decadal to centennial variability in the equatorial Pacific during the last millennium. Geophys Res Lett 40:3450–3456. doi: 10.1002/grl.50647 CrossRefGoogle Scholar
  7. Ault TR, Cole JE, Overpeck JT, Pederson GT, St. George S, Otto-Bliesner B, Woodhouse CA, Deser C (2013b) The continuum of hydroclimate variability in Western North America during the last millennium. J Clim 26:5863–5878. doi: 10.1175/JCLI-D-11-00732.1 CrossRefGoogle Scholar
  8. Berdahl M, Robock A (2013) Northern Hemispheric cryosphere response to volcanic eruptions in the Paleoclimate Modeling Intercomparison Project 3 last millennium simulations. J Geophys Res Atmos 118:12359–12370. doi: 10.1002/2013JD019914 CrossRefGoogle Scholar
  9. Bothe O, Jungclaus JH, Zanchettin D (2013) Consistency of the multi-model CMIP5/PMIP3-past1000 ensemble. Clim. Past 9:2471–2487. doi: 10.5194/cp-9-2471-2013 CrossRefGoogle Scholar
  10. Bothe O, Evans M, Fernández Donado F, Garcia Bustamante E, Gergis J, Gonzalez-Rouco JF, Goosse H, Hegerl G, Hind A, Jungclaus J, Kaufman D, Lehner F, McKay N, Moberg A, Raible CC, Schurer A, Shi F, Smerdon JE, von Gunten L, Wagner S, Warren E, Widmann M, Yiou P, Zorita E (2015) Continental-scale temperature variability in PMIP3 simulations and PAGES 2k regional temperature reconstructions over the past millennium. Clim Past (in review)Google Scholar
  11. Briffa K, Schweingruber F, Jones PD, Osborn T (1998) Reduced sensitivity of recent tree growth to temperature at high northern latitudes. Nature 391:678–682CrossRefGoogle Scholar
  12. Brohan P, Kennedy JJ, Harris I, Tett SFB, Jones PD (2006) Uncertainty estimates in regional and global observed temperature changes: a new data set from 1850. J Geophys Res 111:D12106. doi: 10.1029/2005JD006548 CrossRefGoogle Scholar
  13. Christiansen B, Ljungqvist FC (2012) The extra-tropical Northern Hemisphere temperature in the last two millennia: reconstructions of low-frequency variability. Clim Past 8:765–786. doi: 10.5194/cp-8-765-2012 CrossRefGoogle Scholar
  14. Christiansen B, Schmith T, Thejll P (2009) A surrogate ensemble study of climate reconstruction methods: stochasticity and robustness. J Clim 22(4):951–976CrossRefGoogle Scholar
  15. Christiansen B, Schmith T, Thejll P (2010) Reply. J Clim 23(10):2839–2844. doi: 10.1175/2010JCLI3281.1 CrossRefGoogle Scholar
  16. Coats S, Smerdon JE, Seager R, Cook BI, González-Rouco JF (2013a) Megadroughts in Southwestern North America in ECHO-G millennial simulations and their comparison to proxy drought reconstructions. J Clim 26:7635–7649. doi: 10.1175/JCLI-D-12-00603.1 CrossRefGoogle Scholar
  17. Coats S, Smerdon JE, Cook BI, Seager R (2013b) Stationarity of the tropical Pacific teleconnection to North America in CMIP5/PMIP3 model simulations. Geophys Res Lett 40:1–6. doi: 10.1002/grl.50938 CrossRefGoogle Scholar
  18. Coats S, Smerdon JE, Cook BI, Seager R (2015a) Are simulated megadroughts in the North American Southwest forced? J Clim 28:124–142. doi: 10.1175/JCLI-D-14-00071.1 CrossRefGoogle Scholar
  19. Coats S, Cook BI, Smerdon JE, Seager R (2015b) North American Pan-Continental droughts in model simulations of the last millennium. J Clim (in press)Google Scholar
  20. Cook E, Krusic P (2004) The North American Drought Atlas. NOAA Paleoclimatology, BoulderGoogle Scholar
  21. Cook ER, Seager R, Cane MA, Stahle DW (2007) North American drought: reconstructions, causes, and consequences. Earth Sci Rev 81(1–2):93–134CrossRefGoogle Scholar
  22. Cook ER, Anchukaitis KJ, Buckley BM, D’Arrigo RD, Jacoby GC, Wright WE (2010) Asian monsoon failure and megadrought during the last millennium. Science 328:486–489CrossRefGoogle Scholar
  23. Dannenberg MP, Wise EK (2013) Performance of climate field reconstruction methods over multiple seasons and climate variables. J Geophys Res Atmos 118:9595–9610. doi: 10.1002/jgrd.50765 CrossRefGoogle Scholar
  24. Emile-Geay J, Cobb KM, Mann ME, Wittenberg AT (2013a) Estimating central equatorial Pacific SST variability over the past millennium. Part I: methodology and validation. J Clim 26:2302–2328. doi: 10.1175/JCLI-D-11-00510.1 CrossRefGoogle Scholar
  25. Emile-Geay J, Cobb KM, Mann ME, Wittenberg AT (2013b) Estimating central equatorial Pacific SST variability over the past millennium. Part II: reconstructions and implications. J Clim 26:2329–2352. doi: 10.1175/JCLI-D-11-00511.1 CrossRefGoogle Scholar
  26. Esper J, Wilson RJS, Frank DC, Moberg A, Wanner A, Luterbacher J (2005) Climate: past ranges and future changes. Quat Sci Rev 24:2164–2166CrossRefGoogle Scholar
  27. Evans MN, Kaplan A, Cane MA (2002) Pacific sea surface temperature field reconstruction from coral δ18O data using reduced space objective analysis. Paleoceanography 17:1007. doi: 10.1029/2000PA000590 CrossRefGoogle Scholar
  28. Evans MN, Smerdon JE, Kaplan A, Tolwinski-Ward SE, Gonzalez-Rouco JF (2014) Climate field reconstruction uncertainty arising from multivariate and nonlinear properties of predictors. Geophys Res Lett 41(24):9127–9134. doi: 10.1002/2014GL062063
  29. Fernández-Donado L, González-Rouco JF, Raible CC, Ammann CM, Barriopedro D, García-Bustamante E, Jungclaus JH, Lorenz SJ, Luterbacher J, Phipps SJ, Servonnat J, Swingedouw D, Tett SFB, Wagner S, Yiou P, Zorita E (2013) Large-scale temperature response to external forcing in simulations and reconstructions of the last millennium. Clim Past 9:393–421. doi: 10.5194/cp-9-393-2013 CrossRefGoogle Scholar
  30. Franke J, Frank D, Raible CC, Esper J, Brönnimann S (2013) Spectral biases in tree-ring climate proxies. Nat Clim Ch. 3:360–364CrossRefGoogle Scholar
  31. Golub GH, Heath M, Wahba G (1979) Generalized cross-validation as a method for choosing a good ridge parameter. Technometrics 21(2):215–223CrossRefGoogle Scholar
  32. González-Rouco F, von Storch H, Zorita E (2003) Deep soil temperature as proxy for surface air-temperature in a coupled model simulation of the last thousand years. Geophys Res Lett 30(21):2116. doi: 10.1029/2003GL018264
  33. González-Rouco JF, Beltrami H, Zorita E, von Storch H (2006) Simulation and inversion of borehole temperature profiles in surrogate climates: spatial distribution and surface coupling. Geophys Res Lett 33:L01703CrossRefGoogle Scholar
  34. González-Rouco JF, Fernández-Donado L, Raible CC, Barriopedro D, Garcia-Herrera R, Luterbacher J, Jungclaus J, Swingedow D, Servonat J, Tett S, Brohan P, Zorita E, Wagner S, Ammann C (2011) Medieval climate anomaly to little ice age transition as simulated by current climate models. Pages Newsl 19(1):7–10Google Scholar
  35. Goosse H, Crespin E, de Montety A, Mann ME, Renssen H, Timmermann A (2010) Reconstructing surface temperature changes over the past 600 years using climate model simulations with data assimilation. J Geophys Res 115:D09108. doi: 10.1029/2009JD012737 Google Scholar
  36. Goosse H, Crespin E, Dubinkina S, Loutre M-F, Mann ME, Renssen H, Sallaz-Damaz Y, Shindell DT (2012) The role of forcing and internal dynamics in explaining the “Medieval Climate Anomaly”. Clim Dyn 39:2847–2866CrossRefGoogle Scholar
  37. Guillot D, Rajaratnam B, Emile-Geay J (2015) Statistical paleoclimate reconstructions via Markov random fields. Ann Appl Stat (in press), arXiv:1309.6702Google Scholar
  38. Hegerl GC, Crowley TJ, Allen M, Hyde WT, Pollack HN, Smerdon J, Zorita E (2007) Detection of human influence on a new, validated 1500-year climate reconstruction. J Clim 20:650–666CrossRefGoogle Scholar
  39. Herweijer C, Seager R, Cook ER (2007) North American droughts of the last millennium form a gridded network of tree-ring data. J Clim 20:1353–1376CrossRefGoogle Scholar
  40. Hind A, Moberg A (2013) Past millennial solar forcing magnitude. A statistical hemispheric-scale climate model versus proxy data comparison. Clim Dyn 41:2527–2537. doi: 10.1007/s00382-012-1526-6 CrossRefGoogle Scholar
  41. Hind A, Moberg A, Sundberg R (2012) Statistical framework for evaluation of climate model simulations by use of climate proxy data from the last millennium—Part 2: a pseudo-proxy study addressing the amplitude of solar forcing. Clim Past 8:1355–1365. doi: 10.5194/cp-8-1355-2012 CrossRefGoogle Scholar
  42. Hoerl AE, Kennard RW (1970) Ridge regression: biased estimation for non-orthogonal problems. Technometrics 12:55–67CrossRefGoogle Scholar
  43. Huybers P, Curry W (2006) Links between annual, Milankovitch, and continuum temperature variability. Nature 441:329–332. doi: 10.1038/nature04745 CrossRefGoogle Scholar
  44. Jacoby GC, D’Arrigo R (1995) Tree-ring width and density evidence of climatic and potential forest change in Alaska. Global Biogeochem Cycles 9:227–234CrossRefGoogle Scholar
  45. Lee TCK, Zwiers FW, Tsao M (2007) Evaluation of proxy-based millennial reconstruction methods. Clim Dyn 31:263–281CrossRefGoogle Scholar
  46. Lehner F, Raible CC, Stocker TF (2012) Testing the robustness of a precipitation proxy-based North Atlantic oscillation reconstruction. Quat Sci Rev 45:85–94CrossRefGoogle Scholar
  47. Lewis SC, LeGrande AN (2015) Stability of ENSO and its tropical Pacific teleconnections over the last millennium. Clim Past Discuss 11:1579–1613. doi: 10.5194/cpd-11-1579-2015 CrossRefGoogle Scholar
  48. Li B, Smerdon JE (2012) Defining spatial assessment metrics for evaluation of paleoclimatic field reconstructions of the Common Era. Environmetrics 23(5):394–406CrossRefGoogle Scholar
  49. Luterbacher J, Xoplaki E, Dietrich D, Rickli R, Jacobeit J, Beck C, Gyalistras D, Schmutz C, Wanner H (2002) Reconstruction of sea level pressure fields over the Eastern North Atlantic and Europe back to 1500. Clim Dyn 18:545–561CrossRefGoogle Scholar
  50. Luterbacher J, Dietrich D, Xoplaki E, Grosjean M, Wanner H (2004) European seasonal and annual temperature variability, trends and extremes since 1550. Science 303:1499–1503CrossRefGoogle Scholar
  51. Mann ME, Bradley RS, Hughes MK (1998) Global-scale temperature patterns and climate forcing over the past six centuries. Nature 392:779–787CrossRefGoogle Scholar
  52. Mann ME, Rutherford S, Wahl E, Ammann C (2005) Testing the fidelity of methods used in proxy-based reconstructions of past climate. J Clim 18:4097–4107CrossRefGoogle Scholar
  53. Mann ME, Rutherford S, Wahl E, Ammann C (2007) Robustness of proxy-based climate field reconstruction methods. J Geophys Res 112:D12109CrossRefGoogle Scholar
  54. Mann ME, Zhang Z, Hughes MK, Bradley RS, Miller SK, Rutherford S, Ni F (2008) Proxy-based reconstructions of hemispheric and global surface temperature variations over the past two millennia. Proc Nat Acad Sci USA 105(36):13252–13257CrossRefGoogle Scholar
  55. Mann ME, Zhang Z, Rutherford S, Bradley RS, Hughes MK, Shindell D, Ammann C, Faluvegi G, Ni F (2009a) Global signatures and dynamical origins of the Little Ice Age and Medieval Climate Anomaly. Science 326(5957):1256–1260CrossRefGoogle Scholar
  56. Mann ME, Woodruff JD, Donnelly JP, Zhang Z (2009b) Atlantic hurricanes and climate over the past 1,500 years. Nature 460:880–883CrossRefGoogle Scholar
  57. Masson-Delmotte V, Schulz M, Abe-Ouchi A, Beer J, Ganopolski A, González Rouco JF, Jansen E, Lambeck K, Luterbacher J, Naish T, Osborn T, Otto-Bliesner B, Quinn T, Ramesh R, Rojas M, Shao X, Timmermann A (2013) Information from paleoclimate archives. In: Stocker TF, Qin D, Plattner G-K, Tignor M, Allen SK, Boschung J, Nauels A, Xia Y, Bex V, Midgley PM (eds) Climate change 2013: the physical science basis. Contribution of working group I to the fifth assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge and New YorkGoogle Scholar
  58. Moberg A, Sonechkin D, Holmgren K, Datsenko N, Karlen W (2005) Highly variable Northern Hemisphere temperatures reconstructed from low-and high-resolution proxy data. Nature 433:613–617CrossRefGoogle Scholar
  59. Neukom R, Luterbacher J, Villalba R, KüttelM Frank D, Jones PD, Gosjean M, Esper J, Lopez L, Wanner H (2010) Multi-centennial summer and winter precipitation variability in southern South America. Geophys Res Lett 37:L14708. doi: 10.1029/2010GL043680 CrossRefGoogle Scholar
  60. Otto-Bliesner BL, Brady EC, Fasullo J, Jahn A, Landrum L, Stevenson S, Rosenbloom N, Mai A, Strand G (2015), Climate variability and change since 850 C.E.: an ensemble approach with the community earth system model, Bull Am Meteorol Soc, (in review)Google Scholar
  61. PAGES 2k Consortium (2013) Continental-scale temperature variability over the last two millennia. Nat Geosci 6:339–346. doi: 10.1038/ngeo1797 CrossRefGoogle Scholar
  62. Pauling A, Luterbacher J, Wanner H (2003) Evaluation of proxies for European and North Atlantic temperature field reconstructions. Geophys Res Lett 30:1787. doi: 10.1029/2003GL017589 CrossRefGoogle Scholar
  63. Phipps SJ, McGregor HV, Gergis J, Gallant AJE, Neukom R, Stevenson S, Ackerley D, Brown JR, Fischer MJ, van Ommen TD (2013) Paleoclimate data-model comparison and the role of climate forcings over the past 1500 years. J Clim 26:6915–6936CrossRefGoogle Scholar
  64. Rahmstorf S, Box JE, Feulner G, Mann ME, Robinson A, Rutherford S, Schaffernicht EJ (2015) Exceptional twentieth-century slowdown in Atlantic Ocean overturning circulation. Nature Clim. Ch. 5:475–480CrossRefGoogle Scholar
  65. Riedwyl N, Kuttel M, Luterbacher J, Wanner H (2009) Comparison of climate field reconstruction techniques: application to Europe. Clim Dyn 32:381–395CrossRefGoogle Scholar
  66. Rutherford S, Mann ME, Delworth TL, Stouffer RJ (2003) Climate field reconstruction under stationary and nonstationary forcing. J Clim 16:462–479CrossRefGoogle Scholar
  67. Rutherford S, Mann ME, Osborn TJ, Bradley RS, Briffa KR, Hughes MK, Jones PD (2005) Proxy-based Northern Hemisphere surface temperature reconstructions: sensitivity to methodology, predictor network, target season, and target domain. J Clim 18:2308–2329CrossRefGoogle Scholar
  68. Rutherford SD, Mann ME, Ammann CM, Wahl ER (2010) Comments on: “A surrogate ensemble study of climate reconstruction methods: stochasticity and robustness” by Christiansen, Schmith and Thejll. J Clim 23(10):2832–2838. doi: 10.1175/2010JCLI3146.1 CrossRefGoogle Scholar
  69. Schmidt GA, Jungclaus JH, Ammann CM, Bard E, Braconnot P, Crowley TJ, Delaygue G, Joos F, Krivova NA, Muscheler R, Otto-Bliesner BL, Pongratz J, Shindell DT, Solanki SK, Steinhilber F, Vieira LEA (2011) Climate forcing reconstructions for use in PMIP simulations of the last millennium (v1.0). Geosci Model Dev 4:33–45. doi: 10.5194/gmd-4-33-2011 CrossRefGoogle Scholar
  70. Schmidt GA, Annan JD, Bartlein PJ, Cook BI, Guilyardi E, Hargreaves JC, Harrison SP, Kageyama M, LeGrande AN, Konecky B, Lovejoy S, Mann ME, Masson-Delmotte V, Risi C, Thompson D, Timmermann A, Tremblay L-B, Yiou P (2014) Using palaeo-climate comparisons to constrain future projections in CMIP5. Clim Past 10:221–250. doi: 10.5194/cp-10-221-2014 CrossRefGoogle Scholar
  71. Schneider T (2001) Analysis of incomplete climate data: estimation of mean values and covariance matrices and imputation of missing values. J Clim 14:853–887CrossRefGoogle Scholar
  72. Seager R, Burgman R, Kushnir Y, Clement A, Cook ER, Naik N, Miller J (2008) Tropical Pacific forcing of North American medieval megadroughts: testing the Concept with an atmosphere model forced by coral-reconstructed SSTs. J Clim 21(23):6175–6190. doi: 10.1175/2008JCLI2170.1 CrossRefGoogle Scholar
  73. Smerdon JE (2012) Climate models as a test bed for climate reconstruction methods: pseudoproxy experiments. WIREs Clim Change 3:63–77. doi: 10.1002/wcc.149 CrossRefGoogle Scholar
  74. Smerdon JE, Kaplan A (2007) Comments on “Testing the fidelity of methods used in proxy-based reconstructions of past climate”: the role of the standardization interval. J Clim 20:5666–5670CrossRefGoogle Scholar
  75. Smerdon JE, Kaplan A, Chang D (2008a) On the origin of the standardization sensitivity in RegEM climate field reconstructions. J Clim 21(24):6710–6723CrossRefGoogle Scholar
  76. Smerdon JE, González-Rouco JF, Zorita E (2008b) Comment on “Robustness of proxy-based climate field reconstruction methods” by Michael E. Mann et al. J Geophys Res 113:D18106. doi: 10.1029/2007JD009542 CrossRefGoogle Scholar
  77. Smerdon JE, Kaplan A, Chang D, Evans MN (2010a) A pseudoproxy evaluation of the CCA and RegEM methods for reconstructing climate fields of the last millennium. J Clim 23:4856–4880CrossRefGoogle Scholar
  78. Smerdon JE, Kaplan A, Amrhein DE (2010b) Erroneous model field representations in multiple pseudoproxy studies: corrections and Implications. J Clim 23:5548–5554CrossRefGoogle Scholar
  79. Smerdon JE, Kaplan A, Zorita E, González-Rouco JF, Evans MN (2011) Spatial performance of four climate field reconstruction methods targeting the Common Era. Geophys Res Lett 38:L11705. doi: 10.1029/2011GL047372 CrossRefGoogle Scholar
  80. Steiger NJ, Hakim GJ, Steig EJ, Battisti DS, Roe GH (2014) Assimilation of time-averaged pseudoproxies for climate reconstruction. J Clim 27:426–441CrossRefGoogle Scholar
  81. St. George S, Meko DM, Cook ER (2010) The seasonality of precipitation signals embedded within the North American Drought Atlas. Holocene 20:983–988Google Scholar
  82. Sundberg R, Moberg A, Hind A (2012) Statistical framework for evaluation of climate model simulations by use of climate proxy data from the last millennium—Part 1: theory. Clim Past 8:1339–1353. doi: 10.5194/cp-8-1339-2012 CrossRefGoogle Scholar
  83. Taylor KE, Stouffer RJ, Meehl GA (2012) An overview of CMIP5 and the experiment design. Bull Am Meteorol Soc 93(4):485–498. doi: 10.1175/BAMS-D-11-00094.1 CrossRefGoogle Scholar
  84. Tingley MP, Huybers P (2010) A Bayesian algorithm for reconstructing climate anomalies in space and time. Part I: development and applications to paleoclimate reconstruction problems. J Clim 23:2759–2781CrossRefGoogle Scholar
  85. Tingley MP, Craigmile PF, Haran M, Li B, Mannshardt-Shamseldin E, Rajaratnam B (2012) Piecing together the past: statistical insights into paleoclimatic reconstructions. Quart Sci Rev 35:1–22Google Scholar
  86. von Storch H, Zorita E, Jones JM, Dimitriev Y, González-Rouco F, Tett SFB (2004) Reconstructing past climate from noisy data. Science 306:679–682CrossRefGoogle Scholar
  87. von Storch H, Zorita E, Jones JM, González-Rouco F, Tett SFB (2006) Response to comment on “Reconstructing past climate from noisy data,”. Science 312:529cCrossRefGoogle Scholar
  88. Wang J, Emile-Geay J, Guillot D, Smerdon JE, Rajaratnam B (2014) Evaluating climate field reconstruction techniques using improved emulations of real-world conditions. Clim Past 10:1–19. doi: 10.5194/cp-10-1-2014 CrossRefGoogle Scholar
  89. Werner JP, Luterbacher J, Smerdon JE (2013) A pseudoproxy evaluation of bayesian hierarchical modeling and canonical correlation analysis for climate field reconstructions over Europe. J Clim 26(3):851–867CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • Jason E. Smerdon
    • 1
  • Sloan Coats
    • 1
    • 2
  • Toby R. Ault
    • 3
  1. 1.Lamont-Doherty Earth Observatory of Columbia UniversityPalisadesUSA
  2. 2.NASA Goddard Institute for Space StudiesNew YorkUSA
  3. 3.Cornell UniversityIthacaUSA

Personalised recommendations