Climate Dynamics

, Volume 46, Issue 5–6, pp 1581–1597 | Cite as

Modelling of future mass balance changes of Norwegian glaciers by application of a dynamical–statistical model

  • Sebastian MutzEmail author
  • Heiko Paeth
  • Stefan Winkler


The long-term behaviour of Norwegian glaciers is reflected by the long mass-balance records provided by the Norwegian Water Resources and Energy Directorate. These show positive annual mass balances in the 1980s and 1990s at maritime glaciers followed by rapid mass loss since 2000. This study assesses the influence of various atmospheric variables on mass changes of selected Norwegian glaciers by correlation- and cross-validated stepwise multiple regression analyses. The atmospheric variables are constructed from reanalyses by the National Centers for Environmental Prediction and the European Centre for Medium-Range Weather Forecasts. Transfer functions determined by the multiple regression are applied to predictors derived from a multi-model ensemble of climate projections to estimate future mass-balance changes until 2100. The statistical relationship to the North Atlantic Oscillation (NAO), the strongest predictor, is highest for maritime glaciers and less for more continental ones. The mass surplus in the 1980s and 1990s can be attributed to a strong NAO phase and lower air temperatures during the ablation season. The mass loss since 2000 can be explained by an increase of summer air temperatures and a slight weakening of the NAO. From 2000 to 2100 the statistical model predicts predicts changes for glaciers in more continental settings of c. −20 m w.e. (water equivalent) or 0.2 m w.e./a. The corresponding range for their more maritime counterparts is −0.5 to +0.2 m w.e./a. Results from Bayesian classification of observed atmospheric states associated with high melt or high accumulation in the past into different simulated climates in the future suggest that climatic conditions towards the end of the twenty-first century favour less winterly accumulation and more ablation in summer. The posterior probabilities for high accumulation at the end of the twenty-first century are typically 1.5–3 times lower than in the twentieth century while the posterior probabilities for high melt are often 1.5–3 times higher at the end of the twenty-first century than in the twentieth and early twenty-first century.


Climate change Dynamic–statistical modelling Glacier mass balance Norway 



This work was funded by the DFG (Deutsche Forschungsgemeinschaft) in the framework of the DYNAMO-KG project under grant PA 1194/2-1. The authors also acknowledge the modelling groups, the Program for Climate Model Diagnosis and Intercomparison (PCMDI) and the WCRP’s Working Group on Coupled Modelling (WGCM) for their roles in making the WCRP CMIP3 multi-model dataset available, and the Office of Science, US Department of Energy, who provide support for this dataset. Furthermore, we thank the Norwegian Water Resources and Energy Directorate (Norges vassdrags- og energidirektorat, NVE) for providing the glacier mass-balance data used in this study, the European Centre for Medium-Range Weather Forecasts for providing the ERA40 re-analysis data, and National Centers for Environmental Prediction and the National Center for Atmospheric Research for making their reanalysis products available.


  1. Andreassen LM, Oerlemans J (2009) Modelling long-term summer and winter balances and the climate sensitivity of Storbreen, Norway. Geogr Ann 91(4):233–251. doi: 10.1111/j.1468-0459.2009.00366.x CrossRefGoogle Scholar
  2. Andreassen LM, Winsvold SH (2012) Inventory of Norwegian glaciers. Norwegian Water Resources and Energy Directorate, OsloGoogle Scholar
  3. Andreassen LM, Elvehøy H, Kjøllmoen B, Engeset RV, Haakensen N (2005) Glacier mass-balance and length variation in Norway. Ann Glaciol 42:317–325. doi: 10.3189/172756405781812826 CrossRefGoogle Scholar
  4. Andreassen LM, Paul F, Kaab A, Hausberg JE (2008) Landsat-derived glacier inventory for Jotunheimen, Norway, and deduced glacier changes since the 1930s. Cryosphere 2:131–145. doi: 10.5194/tc-2-131-2008 CrossRefGoogle Scholar
  5. Andreassen LM, Elvehøy H, Jackson M, Kjøllmoen B, Engeset RV, Giesen RH (2011) Glaciological investigations in Norway in 2010. Report 3/2011. Norges Vassdrags- og Energidirektoratet, OsloGoogle Scholar
  6. Anonymous (1969) Mass-balance terms. J Glaciol 8(52):3–7Google Scholar
  7. Bamber JL, Payne A (2004) Mass balance of the cryosphere. Observations and modelling of contemporary and future changes. Cambridge University Press, CambridgeCrossRefGoogle Scholar
  8. Barnston AG, Livezey RE (1987) Classification, seasonality and persistence of low-frequency atmospheric circulation patterns. Mon Weather Rev 115(6):1083–1126CrossRefGoogle Scholar
  9. Barry R (2006) The status of research on glaciers and global glacier recession: a review. Prog Phys Geogr 20:285. doi: 10.1191/0309133306pp478ra CrossRefGoogle Scholar
  10. Berliner LM, Levine RA, Shea DJ (2000) Bayesian climate change assessment. J Clim 13:3805–3820. doi: 10.1175/1520-0442(2000)013%3C3805:BCCA%3E2.0.CO;2 CrossRefGoogle Scholar
  11. Braithwaite RJ, Zhang Y (1999) Modelling changes in mass balance that may occur as a result of climate changes. Geogr Ann 81A(4):489–496CrossRefGoogle Scholar
  12. Caldeira K, Jain A, Hoffert M (2003) Climate sensitivity uncertainty and the need for energy without CO2 emissions. Science 299:2052–2054. doi: 10.1126/science.1078938 CrossRefGoogle Scholar
  13. Chinn T, Winkler S, Salinger MJ, Haakensen N (2005) Recent glacier advances in Norway and New Zealand: a comparison of their glaciological and meteorological causes. Geogr Ann 87(1):141–157. doi: 10.1111/j.0435-3676.2005.00249.x CrossRefGoogle Scholar
  14. Cogley JG (2010) Mass-balance terms revisited. J Glaciol 56(200):997–1001CrossRefGoogle Scholar
  15. Cogley JG, Hock R, Rasmussen LA, Arendt AA, Bauder A, Braithwaite RJ, Jansson P, Kaser G, Möller M, Nicholson L, Zemp M (2011) Glossary of glacier mass balance and related terms. IHP-VII Technical Documents in Hydrology 86, IACS Contribution 2, UNESCO-IHP, ParisGoogle Scholar
  16. D’Agostini G (2003) Bayesian inference in progressing experimental data: principles and basic applications. Rep Prog Phys 66(9):1383–1419. doi: 10.1088/0034-4885/66/9/201 CrossRefGoogle Scholar
  17. Dyurgerov M (2003) Mountain and subpolar glaciers show an increase in sensitivity to climate warming and intensification of the water cycle. J Hydrol 282:164–176. doi: 10.1016/S0022-1694(03)00254-3 CrossRefGoogle Scholar
  18. Dyurgerov M (2005) Mountain glaciers are at risk of extinction. In: Huber UM, Bugmann HKM, Reasoner MA (eds) Global change in mountain regions. Springer, Netherlands, pp 177–185CrossRefGoogle Scholar
  19. Dyurgerov M, Meier M (2000) Twentieth century climate change: evidence from small glaciers. Proc Natl Acad Sci USA 97:1406–1411. doi: 10.1073/pnas.97.4.1406 CrossRefGoogle Scholar
  20. Engelhardt M, Schuler TV, Andreassen LM (2014) Contribution of snow and glacier melt to discharge for highly glacierised catchments in Norway. Hydrol Earth Syst Sci 18(2):511–523. doi: 10.5194/hess-18-511-2014 CrossRefGoogle Scholar
  21. Fealy R, Sweeney J (2005) Detection of a possible change point in atmospheric variability in the North Atlantic and its effects on Scandinavian glacier mass balance. Int J Climatol 25:1819–1833. doi: 10.1002/joc.1231 CrossRefGoogle Scholar
  22. Friedrichs P, Paeth H (2006) Seasonal prediction of African precipitation with ECHAM4–T42 ensemble simulations using a multivariate MOS re-calibration scheme. Clim Dyn 27:761–786. doi: 10.1007/s00382-006-0154-4 CrossRefGoogle Scholar
  23. Giorgi F, Coppola E (2009) Projections of twenty-first century climate over Europe. Eur Phys J Conf 1:29–46. doi: 10.1140/epjconf/e2009-00908-9 CrossRefGoogle Scholar
  24. Glahn H, Lowry D (1972) The use of model output statistics (MOS) in objective weather forecasting. J Appl Meteorol 11:1203–1211. doi: 10.1175/1520-0450(1972)011<1203:TUOMOS>2.0.CO;2 CrossRefGoogle Scholar
  25. Haeberli W, Beniston M (1998) Climate change and its impact on glaciers and permafrost in the Alps. Ambio 27:258–265Google Scholar
  26. Haeberli W, Frauenfelder R, Hoelzle M, Maisch M (1999) On rates and acceleration trends of global glacier mass changes. Geogr Ann 81A:585–591. doi: 10.1111/1468-0459.00086 CrossRefGoogle Scholar
  27. Haeberli W, Hoelzle M, Paul F, Zemp M (2007) Integrated monitoring of mountain glaciers as key indicators of global climate change: the European Alps. Ann Glaciol 31:241–246. doi: 10.3189/172756407782871512 CrossRefGoogle Scholar
  28. Hasselmann K (1998) Conventional and Bayesian approach to climate-change detection and attribution. Q J R Meteorol Soc 124(552):2541–2565. doi: 10.1002/qj.49712455202 CrossRefGoogle Scholar
  29. Hoelzle M, Chinn T, Stumm D, Paul F, Zemp M, Haeberli W (2007) The application of glacier inventory data for estimating past climate change effects on mountain glaciers: a comparison between the European Alps and Southern Alps of New Zealand. Glob Planet Change 56:69–82. doi: 10.1016/j.gloplacha.2006.07.001 CrossRefGoogle Scholar
  30. Hoffert MI, Caldeira K, Jain AK, Haites EF, Harvey LDD, Potter SD, Schlesinger ME, Schneider SH, Watts RG, Wigley TML, Wuebbles DJ (1998) Energy implications of future stabilization of atmospheric CO2 content. Nature 395(6705):881–884. doi: 10.1038/27638 CrossRefGoogle Scholar
  31. Hoffert MI, Caldeira K, Benford G, Volk T, Criswell DR, Green C, Herzog H, Jain AK, Kheshgi HS, Lackner KS, Lewis JS, Lightfoot HD, Manheimer W, Mankins JC, Mauel ME, Perkins LJ, Schlesinger ME, Volk T, Wigley TML (2003) Planning for future energy resources—response. Science 300(5619):582–584. doi: 10.1126/science.300.5619.581b Google Scholar
  32. Houghton JT, Ding Y, Griggs DJ, Noguer M, Van der Linden PJ, Dai X, Maskell K, Johnson CA (2001) Climate change 2001. The scientific basis. Cambridge University Press, CambridgeGoogle Scholar
  33. Huber UM, Bugmann H, Reasoner MA (2005) Global change and mountain regions—a state of knowledge and overview. Kluwer, DordrechtCrossRefGoogle Scholar
  34. Hurrell J (1995) Decadal trends in the North Atlantic Oscillation: regional temperatures and precipitation. Science 269:676–679. doi: 10.1126/science.269.5224.676 CrossRefGoogle Scholar
  35. Imhof P, Nesje A, Nussbaumer SU (2012) Climate and glacier fluctuations at Jostedalsbreen and Folgefonna, southwestern Norway and in the western Alps from the ‘Little Ice Age’ until the present: the influence of the North Atlantic Oscillation. The Holocene 22(2):235–247. doi: 10.1177/0959683611414935 CrossRefGoogle Scholar
  36. IPCC (2007) Climate change 2007: the physical science basis. In: Solomon S, Qin D, Manning M, Chen Z, Marquis M, Averyt KB, Tignor M, Miller HL (eds) Contribution of working group I to the fourth assessment report of the Intergovernmental Panel on Climate Change. Cambridge University Press, CambridgeGoogle Scholar
  37. IPCC (2014) Climate change 2014: impacts, adaptation, and vulnerability. Part A: global and sectoral aspects. In: Field CB, Barros VR, Dokken DJ, Mach KJ, Mastrandrea MD, Bilir TE, Chatterjee M, Ebi KL, Estrada YO, Genova RC, Girma B, Kissel ES, Levy AN, MacCracken S, Mastrandrea PR, White LL (eds) Contribution of working group II to the fifth assessment report of the Intergovernmental Panel on Climate Change. Cambridge University Press, CambridgeGoogle Scholar
  38. Jóhannesson T (1997) The response of two Icelandic glaciers to climatic warming computed with a degree-day glacier mass-balance model coupled to a dynamic glacier model. J Glaciol 43:321–327Google Scholar
  39. Jóhannesson T, Sigurðsson O, Laumann T, Kennet M (1995) Degree-day glacier mass-balance modelling with applications to glaciers in Iceland, Norway and Greenland. J Glaciol 41:345–358Google Scholar
  40. Jones PD, Jónsson T, Wheeler D (1997) Extension to the North Atlantic Oscillation using early instrumental pressure observations from Gibraltar and South-West Iceland. Int J Climatol 17:1433–1450. doi: 10.1002/(SICI)1097-0088(19971115)17:13<1433:AID-JOC203>3.0.CO;2-P CrossRefGoogle Scholar
  41. Kalnay E, Kanamitsu M, Kistler R, Collins W, Deaven D, Gandin L, Iredell M, Saha S, White G, Woollen J (1996) The NCEP/NCAR 40-year reanalysis project. Bull Am Meteorol Soc 77(3):437–471. doi: 10.1175/1520-0477(1996)077<0437:TNYRP>2.0.CO;2 CrossRefGoogle Scholar
  42. Kistler R, Collins W, Saha S, White G, Woollen J, Kalnay E, Chelliah M, Ebisuzaki W, Kanamitsu M, Kousky V, Van den Dool H, Jenne R, Fiorino M (2001) The NCEP–NCAR 50-year reanalysis: monthly means CD-ROM and documentation. Bull Am Meteorol Soc 82(2):247–267CrossRefGoogle Scholar
  43. Krishnamurti TN, Kishtawal CM, LaRow TE, Bachiochi DR, Zhang Z, Williford CE, Gadgil S, Surendran S (1999) Improved weather and seasonal climate forecasts from multimodel superensemble. Science 285:1548–1550. doi: 10.1126/science.285.5433.1548 CrossRefGoogle Scholar
  44. Kuhn M, Dreiseitl E, Hofinger S, Markl G, Span N, Kaiser N (1999) Measurements and models of the mass balance of Hintereisferner. Geogr Ann 81A:659–670. doi: 10.1111/1468-0459.00094 CrossRefGoogle Scholar
  45. Landman WA, Goddard L (2002) Statistical recalibration of GCM forecasts over southern Africa using model output statistics. J Clim 15:2038–2055. doi: 10.1175/1520-0442(2002)015<2038:SROGFO>2.0.CO;2 CrossRefGoogle Scholar
  46. Laumann T, Reeh N (1993) Sensitivity to climate change of the mass balance of glaciers in southern Norway. J Glaciol 39:329–346Google Scholar
  47. Leroy S (1998) Detecting climate signals: some Bayesian aspects. J Clim 11:640–651. doi: 10.1175/1520-0442(1998)011<0640:DCSSBA>2.0.CO;2 CrossRefGoogle Scholar
  48. Löffler H (1988) Natural hazards and health risks from lakes. Int J Water Resour Dev 4(4):276–283. doi: 10.1080/07900628808722402 CrossRefGoogle Scholar
  49. Marshall SJ (2006) Modelling glacier response to climate change. In: Knight PG (ed) Glacier science and environmental change. Blackwell, Oxford, pp 163–173CrossRefGoogle Scholar
  50. Meehl G, Covey C, Delworth T, Latif M, McAvaney B, Mitchell J, Stouffer R, Taylor K (2007) The WCRP CMIP3 multi-model dataset: a new era in climate change research. Bull Am Meteorol Soc 88:1383–1394. doi: 10.1175/BAMS-88-9-1383 CrossRefGoogle Scholar
  51. Michaelsen J (1987) Cross-validation in statistical climate forecast models. J Clim Appl Meteorol 26(11):1589–1600. doi: 10.1175/1520-0450(1987)026<1589:CVISCF>2.0.CO;2 CrossRefGoogle Scholar
  52. Min S, Hense A, Paeth H, Kwon WT (2004) A Bayesian decision method for climate change signal analysis. Meteorol Z 13(5):421–436. doi: 10.1127/0941-2948/2004/0013-0421 CrossRefGoogle Scholar
  53. Moss RH, Edmonds JA, Hibbard KA, Manning MR, Rose SK, van Vuurren DP, Carter TR, Emori S, Kainuma M, Kram T, Meehl GA, Mitchell JFB, Nakicenovic N, Riahi K, Smith SJ, Stouffer RJ, Thomson AM, Weyant JP, Wilbanks TJ (2010) The next generation of scenarios for climate change research and assessment. Nature 463:747–756. doi: 10.1038/nature08823 CrossRefGoogle Scholar
  54. Nakicenovic N, Swart R (2000) Emissions scenarios. Cambridge University Press, CambridgeGoogle Scholar
  55. Nesje A (1989) Glacier-front variations at the outlet glaciers from Jostedalsbreen and climate in the Jostedalsbre region of western Norway in the period 1901–1980. Nor Geogr Tidsskr 43:3–17CrossRefGoogle Scholar
  56. Nesje A (2005) Briksdalsbreen in western Norway: AD 1900–2004 frontal fluctuations as a combined effect of variations in winter precipitation and summer temperature. The Holocene 15(8):1245–1252. doi: 10.1191/0959683605hl897rr CrossRefGoogle Scholar
  57. Nesje A, Dahl SO (2003) The ‘Little Ice Age’—only temperature? The Holocene 13(1):139–145. doi: 10.1191/0959683603hl603fa CrossRefGoogle Scholar
  58. Nesje A, Jóhannesson T, Birks HJB (1995) Briksdalsbreen, western Norway: climatic effects on the terminal response of a temperate glacier between AD 1901 and 1994. The Holocene 5:343–347. doi: 10.1177/095968369500500310 CrossRefGoogle Scholar
  59. Nesje A, Lie Ø, Dahl SO (2000) Is the North Atlantic Oscillation reflected in Scandinavian glacier mass balance records? J Quat Sci 15:587–601. doi: 10.1002/1099-1417(200009)15:6<587:AID-JQS533>3.0.CO;2-2 CrossRefGoogle Scholar
  60. Nesje A, Bakke J, Dahl SO, Lie Ø, Matthews JA (2008) Norwegian mountain glaciers in the past, present and future. Glob Planet Change 60:10–27. doi: 10.1016/j.gloplacha.2006.08.004 CrossRefGoogle Scholar
  61. NOAA-CPC (2014) Northern Hemisphere teleconnection patterns. Accessed 18 Dec 2012
  62. Nordli Ø, Lie Ø, Nesje A, Dahl SO (2003) Spring–summer temperature reconstruction in western Norway 1734–2003: a data-synthesis approach. Int J Climatol 23:1821–1841. doi: 10.1002/joc.980 CrossRefGoogle Scholar
  63. Nordli Ø, Lie Ø, Nesje A, Benestad RE (2005) Glacier mass balance in southern Norway modelled by circulation indices and spring–summer temperatures AD 1781–2000. Geogr Ann 87A(3):431–445. doi: 10.1111/j.0435-3676.2005.00269.x CrossRefGoogle Scholar
  64. Oerlemans J (1986) An attempt to simulate historic front variations of Nigardsbreen. Theor Appl Climatol 34:126–135. doi: 10.1007/BF00867846 CrossRefGoogle Scholar
  65. Oerlemans J (1988) Simulation of historic glacier variations with a simple climate–glacier model. J Glaciol 34:333–341Google Scholar
  66. Oerlemans J (1994) Quantifying global warming from the retreat of glaciers. Science 264:243–245. doi: 10.1126/science.264.5156.243 CrossRefGoogle Scholar
  67. Oerlemans J (1997) Aflowline model for Nigardsbreen, Norway: projection of future glacier length based on dynamic calibration with the historic record. Ann Glaciol 24:382–389Google Scholar
  68. Oerlemans J (2000) Holocene glacier fluctuations: is the current rate of retreat exceptional? Ann Glaciol 31:39–44. doi: 10.3189/172756400781820246 CrossRefGoogle Scholar
  69. Oerlemans J (2001) Glaciers and climate change. Balkema, RotterdamGoogle Scholar
  70. Oerlemans J (2005) Extracting a climate signal from 169 glacier records. Science 308:675–677. doi: 10.1126/science.1107046 CrossRefGoogle Scholar
  71. Østrem G, Brugman M (1991) Glacier mass balance measurements. A manual for field and office work. National Hydrology Research Institute, Scientific Report, No. 4. Environment Canada, N.H.R.I., Saskatoon and Norwegian Water Resources and Energy Directorate, OsloGoogle Scholar
  72. Paeth H (2011) Postprocessing of simulated precipitation for impact research in West Africa. Part I: model output statistics for monthly data. Clim Dyn 36:1321–1336. doi: 10.1007/s00382-010-0760-z CrossRefGoogle Scholar
  73. Paeth H, Hense A (2003) Seasonal forecast of sub-sahelian rainfall using cross-validated model output statistics. Meteorol Z 12:157–173. doi: 10.1127/0941-2948/2003/0012-0157 CrossRefGoogle Scholar
  74. Paeth H, Girmes R, Menz G, Hense A (2006) Improving seasonal forecasting in the low-latitudes. Mon Weather Rev 134:1859–1879. doi: 10.1175/MWR3149.1 CrossRefGoogle Scholar
  75. Paeth H, Rauthe M, Min S (2008a) Multi-model Bayesian assessment of climate change in the northern annular mode. Glob Planet Change 60(3–4):193–206. doi: 10.1016/j.gloplacha.2007.02.004 CrossRefGoogle Scholar
  76. Paeth H, Scholten A, Friedrichs P, Hense A (2008b) Uncertainties in climate change prediction: El Niño-Southern Oscillation and monsoons. Glob Planet Change 60:265–288. doi: 10.1016/j.gloplacha.2007.03.002 CrossRefGoogle Scholar
  77. Paul F, Andreassen LM, Winsvold SH (2011) A new glacier inventory for Jostedalsbreen region, Norway, from Landsat scenes of 2006 and changes since 1966. Ann Glaciol 52:153–162. doi: 10.3189/172756411799096169 CrossRefGoogle Scholar
  78. Pohjola VA, Rogers JC (1997a) Atmospheric circulation and variations in Scandinavian glacier mass balance. Quat Res 47:29–36. doi: 10.1006/qres.1996.1859 CrossRefGoogle Scholar
  79. Pohjola VA, Rogers JC (1997b) Coupling between the atmospheric circulation and extremes of the mass balance of Storglaciären, northern Scandinavia. Ann Glaciol 24:229–233Google Scholar
  80. Radic V, Hock R (2006) Modelling future glacier mass balance and volume changes using ERA-40 reanalysis and climate models: a sensitivity study at Storglaciären, Sweden. J Geophys Res 111:F03003. doi: 10.1029/2005JF000440 Google Scholar
  81. Rasmussen LA, Andreassen LM, Conway H (2007) Reconstruction of mass balance of glaciers in southern Norway back to 1948. Ann Glaciol 46:255–260CrossRefGoogle Scholar
  82. Reichert BK, Bengtsson L, Oerlemans J (2001) Midlatitude forcing mechanisms for glacier mass balance investigated using general circulation models. J Clim 15:3069–3081. doi: 10.1175/1520-0442(2001)014<3767:MFMFGM>2.0.CO;2 CrossRefGoogle Scholar
  83. Rogelj J, Meinshausen M, Knutti R (2012) Global warming under old and new scenarios using IPCC climate sensitivity range estimates. Nat Clim Change 2:248–253. doi: 10.1038/nclimate1385 CrossRefGoogle Scholar
  84. Schneeberger C, Albrecht O, Blatter H, Wild M, Hock R (2001) Modelling the response of glaciers to a doubling in atmospheric CO2: a case study of Storglaciären, northern Sweden. Clim Dyn 17:825–834. doi: 10.1007/s003820000147 CrossRefGoogle Scholar
  85. Schuler TV, Hock R, Jackson M, Elvehøy H, Braun M, Brown I, Hagen JO (2005) Distributed mass-balance and climate sensitivity modelling of Engabreen, Norway. Ann Glaciol 42:395–401. doi: 10.3189/172756405781812998 CrossRefGoogle Scholar
  86. Sivia DS, Skilling J (2006) Data analysis—a Bayesian tutorial. Oxford University Press, New YorkGoogle Scholar
  87. Six D, Reynaud L, Letréguilly A (2001) Bilans de masse des glaciers alpinsetscandinaves, leurs relations avec l’oscillation du climat de l’Atlantiquenord. Sciences de la Terre et des planètes/Earth Planet Sci 333:693–698. doi: 10.1016/S1251-8050(01)01697-4 Google Scholar
  88. SSB (2012) Electricity, annual figures, 2011. Accessed 10 Apr 2013
  89. Tebaldi C, Smith RL, Nychka D, Mearns LO (2005) Quantifying uncertainty in projections of regional climate change: a Bayesian approach to the analysis of multimodel ensembles. J Clim 18:1524–1540. doi: 10.1175/JCLI3363.1 CrossRefGoogle Scholar
  90. Uppala SM, Kallberg PW, Simmons AJ, Andrae U, Bechtold VDC, Fiorino M, Gibson JK, Haseler J, Hernandez A, Kelly GA, Li X, Onogi K, Saarinen S, Sokka N, Allan RP, Andersson E, Arpe K, Balmaseda MA, Beljaars ACM, Van de Berg L, Bidlot J, Bormann N, Caires S, Chevallier F, Dethof A, Dragosavac M, Fisher M, Fuentes M, Hagemann S, Hólm E, Hoskins BJ, Isaksen L, Janssen PAEM, Jenne R, Mcnally AP, Mahfouf JF, Morcrette JJ, Rayner NA, Saunders RW, Simon P, Sterl A, Trenberth KE, Untch A, Vasiljevic D, Viterbo P, Woollen J (2005) The ERA-40 re-analysis. Q J R Meteorol Soc 131(612):2961–3012. doi: 10.1256/qj.04.176 CrossRefGoogle Scholar
  91. Von Storch H, Zwiers F (1999) Statistical analysis in climate research. Cambridge University Press, CambridgeCrossRefGoogle Scholar
  92. Washington R, Hodson A, Isaksson E, Macdonald O (2000) Northern hemisphere teleconnection indices and the mass balance of Svalbard glaciers. Int J Climatol 20:473–487. doi: 10.1002/(SICI)1097-0088(200004)20:5<473:AID-JOC506>3.0.CO;2-O CrossRefGoogle Scholar
  93. Watson E, Luckman BH, Yu B (2006) Long-term relationship between reconstructed seasonal mass balance at Peyto Glacier, Canada, and Pacific sea surface temperatures. The Holocene 16:783–790. doi: 10.1191/0959683606hol973ft CrossRefGoogle Scholar
  94. WGMS (2008) Global glacier changes: facts and figures. World Glacier Monitoring Service, ZürichGoogle Scholar
  95. Wilks D (2006) Statistical methods in the atmospheric sciences. Elsevier Academic Press, AmsterdamGoogle Scholar
  96. Winkler S (1996) Front variations of outlet glaciers from Jostedalsbreen, western Norway, during the twentieth century. Nor Geol Unders Bull 431:33–47Google Scholar
  97. Winkler S, Nesje A (2009) Perturbation of climatic response at maritime glaciers? Erdkunde 63(3):229–244CrossRefGoogle Scholar
  98. Winkler S, Elvehøy H, Nesje A (2009) Glacier fluctuations of Jostedalsbreen, western Norway, during the past 20 years: the sensitive response of maritime mountain glaciers. The Holocene 19:395–414. doi: 10.1177/0959683608101390 CrossRefGoogle Scholar
  99. Winkler S, Chinn T, Gärtner-Roer I, Nussbaumer SU, Zemp M, Zumbühl HJ (2010) An introduction to mountain glaciers as climate indicators with spatial and temporal diversity. Erdkunde 64:97–118. doi: 10.3112/erdkunde.2010.02.01 CrossRefGoogle Scholar
  100. Zemp M, Haeberli W, Hoelzle M, Paul F (2006) Alpine glaciers to disappear within decades? Geophys Res Lett 33:L13504. doi: 10.1029/2006GL026319 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  1. 1.Department of GeosciencesUniversity of TübingenTübingenGermany
  2. 2.Institute of Geography and GeologyUniversity of WürzburgWürzburgGermany
  3. 3.Department of Geological SciencesUniversity of CanterburyChristchurchNew Zealand

Personalised recommendations