Advertisement

Climate Dynamics

, Volume 46, Issue 5–6, pp 1397–1415 | Cite as

Troposphere–stratosphere response to large-scale North Atlantic Ocean variability in an atmosphere/ocean coupled model

  • N.-E. Omrani
  • Jürgen Bader
  • N. S. Keenlyside
  • Elisa Manzini
Article

Abstract

The instrumental records indicate that the basin-wide wintertime North Atlantic warm conditions are accompanied by a pattern resembling negative North Atlantic oscillation (NAO), and cold conditions with pattern resembling the positive NAO. This relation is well reproduced in a control simulation by the stratosphere resolving atmosphere–ocean coupled Max-Planck-Institute Earth System Model (MPI-ESM). Further analyses of the MPI-ESM model simulation shows that the large-scale warm North Atlantic conditions are associated with a stratospheric precursory signal that propagates down into the troposphere, preceding the wintertime negative NAO. Additional experiments using only the atmospheric component of MPI-ESM (ECHAM6) indicate that these stratospheric and tropospheric changes are forced by the warm North Atlantic conditions. The basin-wide warming excites a wave-induced stratospheric vortex weakening, stratosphere/troposphere coupling and a high-latitude tropospheric warming. The induced high-latitude tropospheric warming is associated with reduction of the growth rate of low-level baroclinic waves over the North Atlantic region, contributing to the negative NAO pattern. For the cold North Atlantic conditions, the strengthening of the westerlies in the coupled model is confined to the troposphere and lower stratosphere. Comparing the coupled and uncoupled model shows that in the cold phase the tropospheric changes seen in the coupled model are not well reproduced by the standalone atmospheric configuration. Our experiments provide further evidence that North Atlantic Ocean variability (NAV) impacts the coupled stratosphere/troposphere system. As NAV has been shown to be predictable on seasonal-to-decadal timescales, these results have important implications for the predictability of the extra-tropical atmospheric circulation on these time-scales.

Keywords

North Atlantic oscillation (NAO) Northern annular mode (NAM) Stratosphere/troposphere coupling North Atlantic variability (NAV) Atlantic multidecadal variability (AMV) Atlantic multidecadal oscillation (AMO) Ocean–atmosphere interaction 

Notes

Acknowledgments

We are grateful to Sandro Wellyanto Lubis, Hisashi Nakamura, Marco Giorgetta and Mojib Latif for many fruitful discussion. Computing resources at the Deutsche Klimarechenzentrum, and the Norddeutscher Verbund für Hoch—und Höchstleistungsrechnen are also acknowledged. We are also grateful to our reviewers for the very constructive comments. The work was supported by the Deutsche Forschungsgemeinschaft under the Emmy Noether—Programm (Grant KE 1471/2-1); also by the European Union SUMO (ERC Grant # 266722) and STEPS (PCIG10-GA-2011-304243) projects; the DecCen project funded by the research council of Norway; by the Centre for Climate Dynamics at the Bjerknes centre, Norway; by the Max-Planck-Society, and by the Federal Ministry of Education and Research in Germany (BMBF) through the research programme ‘‘MiKlip’’ (FKZ: 01LP1158A).

Supplementary material

382_2015_2654_MOESM1_ESM.docx (4 mb)
Supplementary material 1 (DOCX 4120 kb)

References

  1. Andrews DG, Holton JR, Leovy CB (1987) Middle atmosphere dynamics. Academic Press, LondonGoogle Scholar
  2. Ba J et al (2014) A multi-model comparison of Atlantic multidecadal variability. Clim Dyn. doi: 10.1007/s00382-014-2056-1 Google Scholar
  3. Bader J, Latif M (2003) The impact of decadal-scale Indian Ocean sea surface temperature anomalies on Sahelian rainfall and the North Atlantic Oscillation. Geophys Res Lett 30(22):2169. doi: 10.1029/2003gl018426 CrossRefGoogle Scholar
  4. Baldwin MP, Dunkerton TJ (1999) Downward propagation of the Arctic Oscillation from the stratosphere to the troposphere. J Geophys Res 104:30937–30946CrossRefGoogle Scholar
  5. Booth BBB, Dunstone NJ, Halloran PR, Andrews T, Bellouin N (2012) Aerosols implicated as a prime driver of twentieth-century North Atlantic climate variability (vol 484, pg 228, 2012). Nature 485(7399):534. doi: 10.1038/Nature11138 Google Scholar
  6. Cagnazzo C, Manzini E (2009) Impact of the stratosphere on the winter tropospheric teleconnections between ENSO and the North Atlantic and European Region. J Clim 22(5):1223–1238. doi: 10.1175/2008jcli2549.1 CrossRefGoogle Scholar
  7. Charney JG, Drazin PG (1961) Propagation of Planetary-Scale disturbances from the lower into the upper atmosphere. J Geophys Res 66(1):83–109. doi: 10.1029/JZ066i001p00083 CrossRefGoogle Scholar
  8. Chen H, Schneider EK (2014) Comparison of the SST-forced responses between coupled and uncoupled climate simulations. J Clim 27(2):740–756. doi: 10.1175/Jcli-D-13-00092.1 CrossRefGoogle Scholar
  9. Chen H, Schneider EK, Kirtman BP, Colfescu I (2013) Evaluation of weather noise and its role in climate model simulations. J Clim 26(11):3766–3784. doi: 10.1175/Jcli-D-12-00292.1 CrossRefGoogle Scholar
  10. Czaja A, Robertson AW, Huck T (2003) The role of atlantic ocean–atmosphere coupling in affecting North Atlantic Oscillation variability. In: Hurrell JW, Kushnir Y, Ottersen G, Visbeck M (eds) The North Atlantic Oscillation: climate significance and environmental impact. Am Geophys Union, Washington, DC, pp 147–172CrossRefGoogle Scholar
  11. Delworth T, Manabe S, Stouffer RJ (1993) Interdecadal variations of the thermohaline circulation in a coupled ocean–atmosphere model. J Clim 6:1993–2011CrossRefGoogle Scholar
  12. Deser C, Blackmon ML (1993) Surface climate variations over the North-Atlantic Ocean during Winter—1900–1989. J Clim 6(9):1743–1753CrossRefGoogle Scholar
  13. Deser C, Thomas RA, Peng S (2007) The transient atmospheric circulation response to North Atlantic SST and Sea Ice anomalies. J Clim 20(18):4751–4767CrossRefGoogle Scholar
  14. Eden C, Jung T (2001) North Atlantic interdecadal variability: oceanic response to the North Atlantic Oscillation (1865–1997). J Clim 14(5):676–691CrossRefGoogle Scholar
  15. Eden C, Willebrand J (2001) Mechanism of interannual to decadal variability of the North Atlantic circulation. J Clim 14(10):2266–2280CrossRefGoogle Scholar
  16. Fletcher CG, Kushner PJ (2011) The role of linear interference in the annular mode response to tropical SST forcing. J Clim 24(3):778–794. doi: 10.1175/2010jcli3735.1 CrossRefGoogle Scholar
  17. Garfinkel CI, Hartmann DL, Sassi F (2010) Tropospheric precursors of anomalous northern hemisphere stratospheric polar vortices. J Clim 23(12):3282–3299. doi: 10.1175/2010jcli3010.1 CrossRefGoogle Scholar
  18. Garfinkel CI, Butler AH, Waugh DW, Hurwitz MM, Polvani LM (2012) Why might stratospheric sudden warmings occur with similar frequency in El Nino and La Nina winters? J Geophys Res-Atmos 117:D19106. doi: 10.1029/2012jd017777 CrossRefGoogle Scholar
  19. Gastineau G, Frankignoul C (2012) Cold-season atmospheric response to the natural variability of the Atlantic meridional overturning circulation. Clim Dyn 39(1–2):37–57. doi: 10.1007/S00382-011-1109-Y CrossRefGoogle Scholar
  20. Giorgetta MA et al (2013) Climate and carbon cycle changes from 1850 to 2100 in MPI-ESM simulations for the coupled model intercomparison project phase 5. J Adv Model Earth Syst 5(3):572–597. doi: 10.1002/Jame.20038 CrossRefGoogle Scholar
  21. Hansen F, Matthes K, Petrick C, Wang W (2014) The influence of natural and anthropogenic factors on major stratospheric sudden warmings. J Geophys Res Atmos 119(13):8117. doi: 10.1002/2013jd021397 CrossRefGoogle Scholar
  22. Haynes PH (2005) Stratospheric dynamics. Annu Rev Fluid Mech 37:263–293CrossRefGoogle Scholar
  23. Hodson DLR, Sutton RT, Cassou C, Keenlyside N, Okumura Y, Zhou TJ (2010) Climate impacts of recent multidecadal changes in Atlantic Ocean sea surface temperature: a multimodel comparison. Clim Dynam 34(7–8):1041–1058. doi: 10.1007/S00382-009-0571-2 CrossRefGoogle Scholar
  24. Hoerling MP, Hurrell JW, Xu TY (2001) Tropical origins for recent North Atlantic climate change. Science 292(5514):90–92CrossRefGoogle Scholar
  25. Holton JR, Tan HC (1980) The influence of the equatorial quasi-biennial oscillation on the global circulation at 50 Mb. J Atmos Sci 37(10):2200–2208. doi: 10.1175/1520-0469(1980)037<2200:Tioteq>2.0.Co;2 CrossRefGoogle Scholar
  26. Hoskins BJ, Karoly DJ (1981) The steady linear response of a spherical atmosphere to thermal and orographic forcing. J Atmos Sci 38(6):1179–1196CrossRefGoogle Scholar
  27. Hoskins BJ, Valdes PJ (1990) On the existence of storm-tracks. J Atmos Sci 47(15):1854–1864. doi: 10.1175/1520-0469(1990)047<1854:oteost>2.0.co;2 CrossRefGoogle Scholar
  28. Hurwitz MM, Newman PA, Garfinkel CI (2012) On the influence of North Pacific sea surface temperature on the Arctic winter climate. J Geophys Res Atmos 117:D19110. doi: 10.1029/2012jd017819 CrossRefGoogle Scholar
  29. Ineson S, Scaife AA (2009) The role of the stratosphere in the European climate response to El Nino. Nat Geosci 2(1):32–36. doi: 10.1038/Ngeo381 CrossRefGoogle Scholar
  30. Jungclaus JH, Haak H, Latif M, Mikolajewicz U (2005) Arctic–North Atlantic interactions and multidecadal variability of the meridional overturning circulation. J Clim 18(19):4013–4031. doi: 10.1175/Jcli3462.1 CrossRefGoogle Scholar
  31. Karpechko AY, Manzini E (2012) Stratospheric influence on tropospheric climate change in the Northern Hemisphere. J Geophys Res Atmos. doi: 10.1029/2011jd017036 Google Scholar
  32. Kavvada A, Ruiz-Barradas A, Nigam S (2013) AMO’s structure and climate footprint in observations and IPCC AR5 climate simulations. Clim Dynam 41(5–6):1345–1364. doi: 10.1007/S00382-013-1712-1 CrossRefGoogle Scholar
  33. Keenlyside NS, Ba J, Mecking J, Omrani N-O, Latif M, Zhang R, Msadek R (2014) North Atlantic multi-decadal variability—mechanisms and predictability. In: Chang C-P, Ghil M, Latif M, Wallace M (eds) Climate change: multidecadal and beyond. World Scientific Publishing, SingaporeGoogle Scholar
  34. Knight JR, Allan RJ, Folland CK, Vellinga M, Mann ME (2005) A signature of persistent natural thermohaline circulation cycles in observed climate. Geophys Res Lett 32(20):L20708. doi: 10.1029/2005gl024233 CrossRefGoogle Scholar
  35. Kushnir Y (1994) Interdecadal variations in North Atlantic sea surface temperature and associated atmospheric conditions. J Clim 7:141–157CrossRefGoogle Scholar
  36. Kushnir Y, Robinson WA, Blade I, Hall NMJ, Peng S, Sutton R (2002) Atmospheric GCM response to extratropical SST anomalies: synthesis and evaluation. J Clim 15(16):2233–2256CrossRefGoogle Scholar
  37. Latif M, Keenlyside NS (2011) A perspective on decadal climate variability and predictability. Deep Sea Res II 58:1880–1894CrossRefGoogle Scholar
  38. Limpasuvan V, Hartmann DL (1999) Eddies and the annular modes of climate variability. Geophys Res Lett 26(20):3133–3136CrossRefGoogle Scholar
  39. Limpasuvan V, Hartmann D (2000) Wave-maintained annulare modes of climate variability. J Clim 13:4414–4429CrossRefGoogle Scholar
  40. Lorenz DJ, Hartmann DL (2003) Eddy-zonal flow feedback in the Northern Hemisphere winter. J Clim 16:1212–1227CrossRefGoogle Scholar
  41. Mann ME, Emanuel KA (2006) Atlantic hurricane trends linked to climate change. EOS Trans AGU 87(24):233. doi: 10.1029/2006EO240001 CrossRefGoogle Scholar
  42. Manzini E, Giorgetta MA, Esch M, Kornblueh L, Roeckner E (2006) The influence of sea surface temperatures on the northern winter stratosphere: ensemble simulations with the MAECHAM5 model. J Clim 19(16):3863–3881CrossRefGoogle Scholar
  43. Manzini E, Cagnazzo C, Fogli PG, Bellucci A, Muller WA (2012) Stratosphere–troposphere coupling at inter-decadal time scales: implications for the North Atlantic Ocean. Geophys Res Lett 39:L05801. doi: 10.1029/2011gl050771 CrossRefGoogle Scholar
  44. Mecking J, Keenlyside N, Greatbatch R (2013) Stochastically-forced multidecadal variability in the North Atlantic: a model study. Clim Dyn. doi: 10.1007/s00382-013-1930-6 Google Scholar
  45. Medhaug I, Furevik T (2011) North Atlantic 20th century multidecadal variability in coupled climate models: sea surface temperature and ocean overturning circulation. Ocean Sci Discuss 8(1):353–396. doi: 10.5194/osd-8-353-2011 CrossRefGoogle Scholar
  46. Newman PA, Nash ER, Rosenfield JE (2001) What controls the temperature of the Arctic stratosphere during the spring? J Geophys Res Atmos 106(D17):19999–20010. doi: 10.1029/2000jd000061 CrossRefGoogle Scholar
  47. Nishii K, Nakamura H, Miyasaka T (2009) Modulations in the planetary wave field induced by upward-propagating Rossby wave packets prior to stratospheric sudden warming events: a case-study. Q J R Meteor Soc 135(638):39–52. doi: 10.1002/Qj.359 CrossRefGoogle Scholar
  48. Omrani NE, Keenlyside NS, Bader J, Manzini E (2014) Stratosphere key for wintertime atmospheric response to warm Atlantic decadal conditions. Clim Dynam 42(3–4):649–663. doi: 10.1007/S00382-013-1860-3 CrossRefGoogle Scholar
  49. Ottera OH, Bentsen M, Drange H, Suo LL (2010) External forcing as a metronome for Atlantic multidecadal variability. Nat Geosci 3(10):688–694CrossRefGoogle Scholar
  50. Peings Y, Magnusdottir G (2014a) Forcing of the wintertime atmospheric circulation by the multidecadal fluctuations of the North Atlantic Ocean. Environ Res Lett 9(3):034018. doi: 10.1088/1748-9326/9/3/034018 CrossRefGoogle Scholar
  51. Peings Y, Magnusdottir G (2014b) Response of the wintertime Northern Hemisphere atmospheric circulation to current and projected Arctic Sea ice decline: a numerical study with CAM5. J Clim 27(1):244–264. doi: 10.1175/Jcli-D-13-00272.1 CrossRefGoogle Scholar
  52. Peng S, Robinson WR, Li S (2003) Mechanisms for the NAO responses to the North Atlantic SST tripole. J Climate 16:1987CrossRefGoogle Scholar
  53. Rayner NA, Parker DE, Horton EB, Folland CK, Alexander LV, Rowell DP, Kent EC, Kaplan A (2003) Global analyses of sea surface temperature, sea ice, and night marine air temperature since the late nineteenth century. J Geophys Res 108(D14):4407. doi: 10.1029/2002JD002670 CrossRefGoogle Scholar
  54. Reichler T, Kim J, Manzini E, Kroger J (2012) A stratospheric connection to Atlantic climate variability. Nat Geosci 5(11):783–787. doi: 10.1038/Ngeo1586 CrossRefGoogle Scholar
  55. Ruiz-Barradas A, Nigam S, Kavvada A (2013) The Atlantic multidecadal oscillation in twentieth century climate simulations: uneven progress from CMIP3 to CMIP5. Clim Dyn 41(11–12):3301–3315. doi: 10.1007/S00382-013-1810-0 CrossRefGoogle Scholar
  56. Stevens B et al (2013) Atmospheric component of the MPI-M earth system model: ECHAM6. J Adv Model Earth Syst 5(2):146–172. doi: 10.1002/Jame.20015 CrossRefGoogle Scholar
  57. Sutton RT, Hodson DLR (2005) Atlantic Ocean forcing of North American and European summer climate. Science 309:115–118CrossRefGoogle Scholar
  58. Terray L, Cassou C (2002) Tropical Atlantic sea surface temperature forcing of quasi-decadal climate variability over the North Atlantic-European region. J Clim 15(22):3170–3187CrossRefGoogle Scholar
  59. Thompson DWJ, Wallace JM (2000) Annular modes in the extratropical circulation. Part I: month-to-month variability. J Clim 13(5):1000–1016CrossRefGoogle Scholar
  60. Thompson DWJ, Wallace JM, Hegerl GC (2000) Annular modes in the extratropical circulation. Part II: trends. J Clim 13(5):1018–1036CrossRefGoogle Scholar
  61. Vellinga M, Wu PL (2004) Low-latitude freshwater influence on centennial variability of the Atlantic thermohaline circulation. J Clim 17(23):4498–4511. doi: 10.1175/3219.1 CrossRefGoogle Scholar
  62. Visbeck M, Chassignet E, Curry R, Delworth T, Dickson B, Krahmann G (2003) The ocean’s response to North Atlantic Oscillation variability, in “The North Atlantic Oscillation. In: Hurrell JW, Kushnir Y, Ottersen G, Visbeck M (eds) The North Atlantic Oscillation: climate significance and environmental impact. American Geophysical Union, Washington, DC, pp 113–146CrossRefGoogle Scholar
  63. Zanchettin D, Rubino A, Matei D, Bothe O, Jungclaus JH (2012) Multidecadal-to-centennial SST variability in the MPI–ESM simulation ensemble for the last millennium. Clim Dyn. doi: 10.1007/s00382-012-1361-9 Google Scholar
  64. Zanchettin D, Bothe O, Muller W, Bader J, Jungclaus JH (2014) Different flavors of the Atlantic multidecadal variability. Clim Dyn 42(1–2):381–399. doi: 10.1007/S00382-013-1669-0 CrossRefGoogle Scholar
  65. Zhang R, Delworth TL (2006) Impact of Atlantic multidecadal oscillations on India/Sahel rainfall and Atlantic hurricanes. Geophys Res Lett 33(17):L17712. doi: 10.1029/2006gl026267 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • N.-E. Omrani
    • 1
    • 2
  • Jürgen Bader
    • 3
    • 4
  • N. S. Keenlyside
    • 1
    • 4
  • Elisa Manzini
    • 3
  1. 1.Geophysical InstituteUniversity of Bergen and Bjerknes Centre for Climate ResearchBergenNorway
  2. 2.GEOMAR, Helmholtz Centre for Ocean Research KielKielGermany
  3. 3.Max Planck Institute for MeteorologyHamburgGermany
  4. 4.Uni Climate, Uni Research and The Bjerknes Centre for Climate ResearchBergenNorway

Personalised recommendations