Advertisement

Climate Dynamics

, Volume 46, Issue 5–6, pp 1351–1369 | Cite as

The sensitivity of the Atlantic meridional overturning circulation to enhanced freshwater discharge along the entire, eastern and western coast of Greenland

  • Lei YuEmail author
  • Yongqi Gao
  • Odd Helge Otterå
Article

Abstract

The possible responses of the Atlantic meridional overturning circulation (AMOC) to increased freshwater discharge along the Greenland coast has become an issue of growing concern given the increasing rate of the Greenland ice sheet (GrIS) melting. A recent model study suggested a weakened AMOC of about 13–30 % when a freshwater anomaly of 0.1 Sv (1 Sv = 106 m3 s−1) was released along the entire Greenland coast during the late twentieth century (1965–2000). In this study we use a fully coupled climate model to examine the sensitivity of AMOC to a similar amount of freshwater forcing, but released separately along the eastern, the western and the entire Greenland coast. Our results show that in all three cases there is a general weakening of the AMOC mainly due to a reduced formation of Labrador Sea Water. Moreover, when additional freshwater is released along the eastern coast of Greenland, the AMOC weakens more compared to the other two cases. The different degree of convective mixing reduction in the Irminger Sea is the main reason for the spread in AMOC responses in the three freshwater-hosing experiments. Compared to the other two experiments, the eastern-coast experiment shows a relative warming in the Labrador Sea and the generation of a negative Greenland tip jet-like wind-pattern anomaly. These anomalies lead to a weaker convective mixing in the southern Irminger Sea, and result subsequently in less formation of the simulated Upper Labrador Sea Water (ULSW) in the eastern coast experiment. This study therefore highlights a potential important role for ULSW formation in determining the sensitivity of the AMOC in response to large GrIS melting.

Keywords

AMOC Greenland ice sheet melting Freshwater-hosing experiment Upper Labrador Sea water formation 

Notes

Acknowledgments

The simulations and analysis in this study were supported by the European Union’s Seventh Framework Program (THOR; Grant No. 212643), the National Basic Research Program of China (Grant No. 2009CB421401) and the Strategic Priority Research Program (Grant No. XDA05110203) of the Chinese Academy of Sciences, respectively. This study is also a contribution to the Centre for Climate Dynamics at the Bjerknes Centre, Bergen, Norway. We thank three anonymous reviewers for their very useful comments that improved the manuscript.

References

  1. Bakker P, Van Meerbeeck CJ, Renssen H (2012) Sensitivity of the north atlantic climate to greenland ice sheet melting during the last interglacial. Clim Past 8:995–1009CrossRefGoogle Scholar
  2. Bamber J, Broeke MVD, Ettema J, Lenaerts J, Rignot E (2012) Recent large increases in freshwater fluxes from Greenland into the north Atlantic. Geophys Res Lett 39(19):L19–L501. doi: 10.1029/2012GL052552 CrossRefGoogle Scholar
  3. Blaschek M, Bakker P, Renssen H (2015) The influence of Greenland ice sheet melting on the Atlantic meridional overturning circulation during past and future warm periods: a model study. Clim Dyn 44:2137–2157CrossRefGoogle Scholar
  4. Bleck R, Rooth C, Hu D, Smith LT (1992) Salinity-driven thermocline transient in a wind- and thermohaline-forced isopycnic coordinate model of the North Atlantic. J Phys Oceanogr 22:1485–1505CrossRefGoogle Scholar
  5. Boyle EA, Keigwin LD (1987) North Atlantic thermohaline circulation during the past 20000 years linked to high latitude surface temperature. Nature 330:35–40CrossRefGoogle Scholar
  6. Broecker WS (1991) The great ocean conveyor. Oceanography 4:79–89CrossRefGoogle Scholar
  7. Bryan F (1986) High-latitude salinity effects and interhemispheric thermohaline circulations. Nature 323:301–304CrossRefGoogle Scholar
  8. Chen JL, Wilson CR, Tapley BD (2006) Satellite gravity measurements confirm accelerated melting of Greenland ice sheet. Science 313:1958–1960CrossRefGoogle Scholar
  9. Christoffersen P, Mugford RI, Heywood KJ et al (2011) Warming waters in an East Greenland fjord prior to glacier retreat: mechanisms and connection to large-scale atmospheric conditions. Cryosphere 5:701–714. doi: 10.5194/tc-5-701-201 CrossRefGoogle Scholar
  10. Church JA, Clark PU, Cazenave A, et al (2013) Sea level change. In: Stocker TF, Qin D, Plattner G-K, et al (eds) Climate change 2013: the physical science basis. Contribution of working group I to the fifth assessment report of the intergovernmental panel on climate change. Cambridge University Press, CambridgeGoogle Scholar
  11. Déqué M, Dreveton C, Braun A, Cariolie D (1994) The ARPEGE/IFS atmosphere model: a contribution to the French community climate modelling. Clim Dyn 10:249–266CrossRefGoogle Scholar
  12. Dickson B, Yashayaev I, Meincke J, Turrell B, Dye S, Holfort J (2002) Rapid freshening of the deep North Atlantic Ocean over the past four decades. Nature 416:832–837CrossRefGoogle Scholar
  13. Fettweis X, Tedesco M, van den Broeke M, Ettema J (2011) Melting trends over the Greenland ice sheet (1958–2009) from spaceborne microwave data and regional climate models. Cryosphere 5:359–375. doi: 10.5194/tc-5-359-2011 CrossRefGoogle Scholar
  14. Fichefet T, Driesschaert E, Goosse H, et al. (2007) Modelling the influence of Greenland ice sheet melting on the Atlantic meridional overturning circulation during the next millennia. Geophys Res Abs 9: 02554. SRef-ID: 1607-7962/gra/EGU2007-A-02554Google Scholar
  15. Franzke C (2011) Nonlinear trends, long-range dependence, and climate noise propertiesof surface temperature. J Clim 25:4172–4183CrossRefGoogle Scholar
  16. Furevik T, Bentsen M, Drange H et al (2003) Description and evaluation of the Bergen climate model: ARPEGE coupled with MICOM. Clim Dyn 21:27–51CrossRefGoogle Scholar
  17. Gao Y, Drange H, Bentsen M (2003) Effects of diapycnal and isopycnal mixing on the ventilation of CFCs in the North Atlantic in an isopycnic coordinate OGCM. Tellus 55B:837–854CrossRefGoogle Scholar
  18. Geleyn J-F (1988) Interpolation of wind, temperature and humidity values from model levels to the height of measurement. Tellus (A) 40:347–351CrossRefGoogle Scholar
  19. Giles KA, Laxon SW, Ridout AL, Wingham DJ, Bacon S (2012) Western Arctic Ocean freshwater storage increased by wind driven spin-up of the Beaufort Gyre. Nat Geosci 5:194–197. doi: 10.1038/ngeo1379 CrossRefGoogle Scholar
  20. Hansen B, Hátún H, Kristiansen R, Olsen SM, Østerhus S (2010) Stability and forcing of the Iceland-Faroe inflow of water, heat and salt to the Arctic. Ocean Sci 6:1013–1026. doi: 10.5194/os-6-1013-2010 CrossRefGoogle Scholar
  21. Jungclaus JH, Haak H, Esch M et al (2006) Will Greenland melting halt the thermohaline circulation? Geophys Res Lett 33:L17708CrossRefGoogle Scholar
  22. Kanzow T, Cunningham SA, Johns WE et al (2010) Seasonal variability of the Atlantic meridional overturning circulation at 26.5°N. J Clim 23:5678–5698CrossRefGoogle Scholar
  23. Kieke D, Rhein M, Stramma L et al (2006) Changes in the CFC inventories and formation rates of upper Labrador Sea Water, 1997–2001. J Phys Oceanogr 36:64–86CrossRefGoogle Scholar
  24. Kleinen T, Osborn TJ, Briffa KR (2009) Sensitivity of climate responses to variations in freshwater hosing location. Ocean Dyn 59:509–521. doi: 10.1007/s10236-009-0189-2 CrossRefGoogle Scholar
  25. Langehaug HR, Medhaug I, Eldevik T, Ottrå OH (2012) Arctic/Atlantic exchanges via the subpolar gyre. J Clim 25:2421–2439. doi: 10.1175/JCLI-D-11-00085.1 CrossRefGoogle Scholar
  26. Lohmann K, Jungclaus J, Matei D et al (2014) The role of subpolar deep water formation and Nordic Seas overflows in simulated multidecadal variability of the Atlantic Meridional overturning circulation. Ocean Sci 10:227–241CrossRefGoogle Scholar
  27. Louis J (1979) A parametric model of vertical eddy fluxes in the atmosphere. Bound Lay Meteorol 17(187):202Google Scholar
  28. Manabe S, Stouffer RJ (1995) Simulation of abrupt climate change induced by freshwater input to the North Atlantic Ocean. Nature 378:165–167CrossRefGoogle Scholar
  29. Manabe S, Stouffer RJ (1997) Coupled ocean-atmosphere model response to freshwater input: comparison to Younger Dryas event. Pale-oceanography 12:321–336Google Scholar
  30. Manabe S, Stouffer RJ (1999) The role of thermohaline circulation in climate. Tellus 51:91–109Google Scholar
  31. Marzeion B, Levermann A (2009) Stratification-dependent mixing may increase sensitivity of a wind-driven Atlantic overturning to surface freshwater flux. Geophys Res Lett 36:L20602. doi: 10.1029/2009GL039947 CrossRefGoogle Scholar
  32. Marzeion B, Levermann A, Mignot J (2007) The role of stratification-dependent mixing for the stability of the Atlantic overturning in a global climate model. J Phys Oceanogr 37:2672–2681CrossRefGoogle Scholar
  33. McDougall TJ, Dewar WK (1998) Vertical mixing and cabbeling in layered models. J Phys Oceanogr 28:1458–1480CrossRefGoogle Scholar
  34. Medhaug I, Langehaug HR, Eldevik T, Furevik T, Bentsen M (2012) Mechanism for decadal scale variability in a simulated Atlantic meridional overturning circulation. Clim Dyn 39:77–93CrossRefGoogle Scholar
  35. Mikolajewicz U, Vizcaíno M, Jungclaus J et al (2007) Effect of ice sheet interactions in anthropogenic climate change simulation. Geophys Res Lett 34:L18706. doi: 10.1029/2007GL031173 CrossRefGoogle Scholar
  36. Mohammmad R, Nilsson J (2004) The role of diapycnal mixing for the equilibrium response of the thermohaline circulation. Ocean Dyn 54:54–65CrossRefGoogle Scholar
  37. Nilsson J, Broström G, Walin G (2003) The thermohaline circulation and vertical mixing: does weaker density stratification give stronger overturning? J Phys Oceanogr 33:2781–2795CrossRefGoogle Scholar
  38. Otterå OH, Drange H, Bentsen M et al (2004) Transient response of the Atlantic meridional overturning circulation to enhanced freshwater input to the nordic seas-arctic ocean in the Bergen climate model. Tellus 56A:342–361CrossRefGoogle Scholar
  39. Otterå OH, Bentsen M, Bethke I, Kvamstø NG (2009) Simulated pre-industrial climate in Bergen Climate Model (version 2) model description and large-scale circulation features. Geosci Model Dev 2:197–212CrossRefGoogle Scholar
  40. Otterå OH, Bentsen M, Drange H, Suo L (2010) External forcing as a metronome for Atlantic multidecadal variability. Nat Geosci 3:688–694. doi: 10.1038/NGEO955 CrossRefGoogle Scholar
  41. Pèrez-Brunius P, Rossby T, Watts DR (2004) The transformation of the warm waters of the North Atlantic from a stream function perspective. J Phys Oceanogr 34:2238–2256CrossRefGoogle Scholar
  42. Peterson BJ, Holmes RM, McClelland JW et al (2002) Increasing river discharge to the Arctic Ocean. Science 298:2171–2173CrossRefGoogle Scholar
  43. Pickart RS, Smethie WM Jr, Lazier JRN, Jones EP et al (1996) Eddies of newly formed upper Labrador Sea Water. J Geophys Res 101:20711–20726CrossRefGoogle Scholar
  44. Pickart RS, Spall MA, Ribergaard MH et al (2003a) Deep convection in the Irminger Sea forced by the Greenland tip jet. Nature 424:152–156CrossRefGoogle Scholar
  45. Pickart RS, Straneo F, Moore GWK (2003b) Is Labrador sea water formed in the irminger basin? Deep-Sea Res I 50:23–52CrossRefGoogle Scholar
  46. Rahmstorf S (1994) Rapid climate transitions in a coupled ocean-atmosphere model. Nature 372:82–85CrossRefGoogle Scholar
  47. Rahmstorf S (1996) On the freshwater forcing and transport of the Atlantic thermohaline circulation. Clim Dyn 12:799–811CrossRefGoogle Scholar
  48. Rahmstorf S, Ganopolski A (1999) Long-term global warming scenarios computed with an efficient coupled climate model. Clim Change 43:353–367CrossRefGoogle Scholar
  49. Rhein M, Stramma L, Send U (1995) The Atlantic Deep Western Boudary Current: water masses and transport near the equator. J Geophys Res 100:2441–2457CrossRefGoogle Scholar
  50. Ridley JK, Huybrechts P, Gregory JM, Lowe JA (2005) Elimination of the Greenland ice sheet in a high CO2 climate. J Clim 18:3409–3427CrossRefGoogle Scholar
  51. Rignot E, Koppes MC, Velicogna I (2010) Rapid submarine melting of the calving faces of West Greenland glaciers. Nat Geosci 3:187–191CrossRefGoogle Scholar
  52. Rignot E, Velicogna I, van den Broeke MR et al (2011) Acceleration of the contribution of the Greenland and Antarctic ice sheets to sea level rise. Geophys Res Lett 38:L05503CrossRefGoogle Scholar
  53. Roche DM, Wiersma AP, Renssen H (2010) A systematic study of the impact of freshwater pulses with respective to different geographical locations. Clim Dyn 24:997–1013CrossRefGoogle Scholar
  54. Rooth C (1982) Hydrology and ocean circulation. Prog Oceanogr 11:131–149. doi: 10.1016/0079-6611(82)90006-4 CrossRefGoogle Scholar
  55. Saenko OA, Weaver AJ, Robitaille DY, Flato GM (2007) Warming of the subpolar Atlantic triggered by freshwater discharge at the continental boundary. Geophys Res Lett 34:L15604. doi: 10.1029/2007GL030674 CrossRefGoogle Scholar
  56. Salas-Mélia D (2002) A global coupled sea ice-ocean model. Ocean Model 4:137–172. doi: 10.1016/S1463.4003(01)00015-4 CrossRefGoogle Scholar
  57. Schiller A, Mikolajewicz U, Voss R (1997) The stability of the North Atlantic thermohaline circulation in a coupled ocean-atmosphere general circulation model. Clim Dyn 13:325–347CrossRefGoogle Scholar
  58. Sciascia R, Straneo F, Cenedese C et al (2013) Seasonal variability of submarine melt rate and circulation in an East Greenland fjord. J Geophy Res 118:2492–2506CrossRefGoogle Scholar
  59. Shepherd A, Ivins ER, Geruo A et al (2012) A reconciled estimate of ice-sheet mass balance. Science 338:1183–1189CrossRefGoogle Scholar
  60. Smeed DA, McCarthy GD, Cunningham SA et al (2014) Observed decline of the Atlantic Meridional Overturning Circulation 2004–2102. Ocean Sci 10:29–38. doi: 10.5194/os-10-29-2014 CrossRefGoogle Scholar
  61. Smethie WM Jr, Fine RA, Putzka A, Jones EP (2000) Tracing the flow of North Atlantic Deep Water using chlorofluorocarbons. J Geophys Res 105:14297–14323CrossRefGoogle Scholar
  62. Smith RS, Gregory JM (2009) A study of the sensitivity of ocean overturning circulation and climate to freshwater input in different regions of the North Atlantic. Geophys Res Lett 36:L15701. doi: 10.1029/2009GL038607 CrossRefGoogle Scholar
  63. Stommel H (1961) Thermohaline convection with two stable regimes of flow. Tellus 13:224–230CrossRefGoogle Scholar
  64. Stouffer RJ, Yin J, Gregory JM, Dixon KW et al (2006) Investigating the causes of the response of the thermohline circulation to past and future climate changes. J Clim 19:1365–1387CrossRefGoogle Scholar
  65. Straneo F, Hamilton GS, Sutherland DA et al (2010) Rapid circulation of warm subtropical waters in a major glacial fjord in East Greenland. Nature Geosci 3:182–186CrossRefGoogle Scholar
  66. Suo L, Otterå OH, Bentsen M, Gao Y, Johannessen OM (2013) External forcing of the early 20th century Arctic warming. Tellus (A) 65, doi: 10.3402/tellusa.v65i0.20578
  67. Swingedouw D, Rodehacke CB, Behrens E et al (2013) Decadal fingerprints of freshwater discharge around Greenland in a multi-model ensemble. Clim Dyn 41(3–4):695–720. doi: 10.1007/s00382-012-1479-9 CrossRefGoogle Scholar
  68. Terray L, Thual O, Belamari S et al (1995) Climatology and interannual variability simulated by the ARPEGE-opa model. Clim Dyn 11:487–505CrossRefGoogle Scholar
  69. Thomas R, Frederick E, Krabill W, Manizade S, Martin C (2009) Recent changes on Greenland outlet glaciers. J Glaciol 55:147–162CrossRefGoogle Scholar
  70. Toom MD, Dijkstra HA, Weijer W et al (2014) Response of a strongly eddying global ocean to North Atlantic freshwater perturbations. J Phys Oceanogr 44:464–481CrossRefGoogle Scholar
  71. Tziperman E (2000) Proximity of the present day thermohaline circulation to an instability threshold. J Phys Oceanogr 30:90–104CrossRefGoogle Scholar
  72. Våge K, Pickart RS, Moore GWK, Ribergaard MH (2008) winter mixed layer development in the central Irminger Sea: the effect of strong, intermittent wind events. J Phys Oceanogr 38:541–565CrossRefGoogle Scholar
  73. Vellinga MR, Wood A, Gregory JM (2002) Processes governing the recovery of a perturbed Thermohaline Circulation in HadCM3. J Clim 15:764–780CrossRefGoogle Scholar
  74. Vizcaíno M, Mikolajewicz U, Jungclaus J et al (2010) Climate modification by future ice sheet changes and consequences for ice sheet mass balance. Clim Dyn 34:301–324CrossRefGoogle Scholar
  75. Weijer W, Maltrud ME, Hecht MW et al (2012) Response of the Atlantic ocean circulation to greenland ice sheet melting in a strongly-eddying ocean model. Geophys Res Lett 39:L09606. doi: 10.1029/2012GL051611 CrossRefGoogle Scholar
  76. Yu L, Gao YQ, Wang HJ, Drange H (2008) Revisiting effect of ocean diapycnal mixing on atlantic meridional overturning circulation recovery in a freshwater perturbation simulation. Adv Atmos Sci 25:597–609CrossRefGoogle Scholar
  77. Yu L, Gao YQ, Hj Wang et al (2009) The responses of East Asian summer monsoon to the North Atlantic Meridional Overturning Circulation in an enhanced freshwater input simulation. Chin Sci Bull 54:4724–4732. doi: 10.1007/s11434-009-0720-3 CrossRefGoogle Scholar
  78. Zhang J, Schmitt RW, Huang RX (1999) The relative influence of diapycnal mixing and hydrological forcing on the stability of thermohaline circulation. J Phys Oceanogr 29:1096–1108CrossRefGoogle Scholar
  79. Zhang R, Kang SM, Held IM (2010) Sensitivity of climate change induced by the weakening of the Atlantic Meridional Overturning Circulation to cloud feedback. J Clim 23:378–389. doi: 10.1175/2009JCLI3118.1 CrossRefGoogle Scholar
  80. Zhu X, Jungclaus JH (2008) Interdecadal variability of the meridional overturning circulation as an ocean internal mode. Clim Dyn 31:731–741CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  1. 1.Climate Changes Research Center, Institute of Atmospheric PhysicsChinese Academy of SciencesBeijingChina
  2. 2.Nansen Environmental and Remote Sensing Center/Bjerknes Center for Climate ResearchBergenNorway
  3. 3.Uni Research Climate and Bjerknes Centre for Climate ResearchBergenNorway
  4. 4.Nansen-Zhu International Research Centre, Institute of Atmospheric PhysicsChinese Academy of SciencesBeijingPeople’s Republic of China

Personalised recommendations