Climate Dynamics

, Volume 49, Issue 3, pp 753–773 | Cite as

Intercomparison and validation of the mixed layer depth fields of global ocean syntheses

  • Takahiro Toyoda
  • Yosuke Fujii
  • Tsurane Kuragano
  • Masafumi Kamachi
  • Yoichi Ishikawa
  • Shuhei Masuda
  • Kanako Sato
  • Toshiyuki Awaji
  • Fabrice Hernandez
  • Nicolas Ferry
  • Stéphanie Guinehut
  • Matthew J. Martin
  • K. Andrew Peterson
  • Simon A. Good
  • Maria Valdivieso
  • Keith Haines
  • Andrea Storto
  • Simona Masina
  • Armin Köhl
  • Hao Zuo
  • Magdalena Balmaseda
  • Yonghong Yin
  • Li Shi
  • Oscar Alves
  • Gregory Smith
  • You-Soon Chang
  • Guillaume Vernieres
  • Xiaochun Wang
  • Gael Forget
  • Patrick Heimbach
  • Ou Wang
  • Ichiro Fukumori
  • Tong Lee
Article

Abstract

Intercomparison and evaluation of the global ocean surface mixed layer depth (MLD) fields estimated from a suite of major ocean syntheses are conducted. Compared with the reference MLDs calculated from individual profiles, MLDs calculated from monthly mean and gridded profiles show negative biases of 10–20 m in early spring related to the re-stratification process of relatively deep mixed layers. Vertical resolution of profiles also influences the MLD estimation. MLDs are underestimated by approximately 5–7 (14–16) m with the vertical resolution of 25 (50) m when the criterion of potential density exceeding the 10-m value by 0.03 kg m−3 is used for the MLD estimation. Using the larger criterion (0.125 kg m−3) generally reduces the underestimations. In addition, positive biases greater than 100 m are found in wintertime subpolar regions when MLD criteria based on temperature are used. Biases of the reanalyses are due to both model errors and errors related to differences between the assimilation methods. The result shows that these errors are partially cancelled out through the ensemble averaging. Moreover, the bias in the ensemble mean field of the reanalyses is smaller than in the observation-only analyses. This is largely attributed to comparably higher resolutions of the reanalyses. The robust reproduction of both the seasonal cycle and interannual variability by the ensemble mean of the reanalyses indicates a great potential of the ensemble mean MLD field for investigating and monitoring upper ocean processes.

Keywords

Ocean reanalysis Mixed layer depth Ocean Reanalyses Intercomparison Project (ORA-IP) Data assimilation Ocean general circulation model Isothermal layer depth 

Notes

Acknowledgments

We thank two anonymous reviewers for their constructive comments. The MILA-GPV dataset (Hosoda et al. 2010) is provided by the RCGC/JAMSTEC from their web site at http://www.jamstec.go.jp/ARGO/argo_web/MILAGPV/. The MLD dataset of de Boyer Montégut et al. (2004) is obtained from his web site at http://www.ifremer.fr/cerweb/deboyer/mld/home.php. The Argo float data are provided by the NODC/NOAA at their web site http://www.nodc.noaa.gov/OC5/WOD13/. This work was partly supported by the Research Program on Climate Change Adaptation (RECCA) of the Ministry of Education, Culture, Sports, Science and Technology of the Japanese government (MEXT), by the Data Integration and Analysis System (DIAS) of the MEXT, by the joint UK DECC/Defra Met Office Hadley Centre Climate Programme (GA01101), by the UK Public Weather Service Research Programme, and by the European Commission funded projects MyOcean (FP7-SPACE-2007-1) and MyOcean2 (FP7-SPACE-2011-1). During the preparation of this article, our co-author Nicolas Ferry passed away. He was an active and supportive member of the ORA-IP and CLIVAR-GSOP activities.

References

  1. Alves O, Shi L, Wedd R, Balmaseda M, Chang Y, Chepurin G, Fujii Y, Gaillard F, Good S, Guinehut S, Haines K, Hernandez F, Lee T, Palmer M, Peterson KA, Masuda S, Storto A, Toyoda T, Valdivieso M, Vernieres G, Wang X, Yin Y (2014) An assessment of upper ocean salinity reanalyses from CLIVAR GSOP/GODAE system. CLIVAR EXCHANGES 64:11–14Google Scholar
  2. Balmaseda MA, Dee D, Vidard A, Anderson DLT (2007) A multivariate treatment of bias for sequential data assimilation: application to the tropical oceans. Q J R Meteorol Soc 133:167–179. doi:10.1002/qj.12 CrossRefGoogle Scholar
  3. Balmaseda MA, Mogensen K, Weaver AT (2013) Evaluation of the ECMWF ocean reanalysis system ORAS4. Q J R Meteorol Soc 139:1132–1161. doi:10.1002/qj.2063 CrossRefGoogle Scholar
  4. Balmaseda MA, Hernandez F, Storto A, Palmer MD, Alves O, Shi L, Smith GC, Toyoda T, Valdivieso M, Barnier B, Behringer D, Boyer T, Chang YS, Chepurin GA, Ferry N, Forget G, Fujii Y, Good S, Guinehut S, Haines K, Ishikawa Y, Keeley S, Köhl A, Lee T, Martin M, Masina S, Masuda S, Meyssignac B, Mogensen K, Parent L, Peterson KA, Tang YM, Yin Y, Vernieres G, Wang X, Waters J, Wedd R, Wang O, Xue Y, Chevallier M, Lemieux JF, Dupont F, Kuragano T, Kamachi M, Awaji T, Caltabiano A, Wilmer-Becker K, Gaillard F (2015) The ocean reanalyses intercomparison project (ORA-IP). J Oper Oceanogr 7(3):81–99Google Scholar
  5. Blanke B, Delecluse P (1993) Variability of the tropical Atlantic ocean simulated by a general circulation model with two different mixed-layer physics. J Phys Oceanogr 23:1363–1388CrossRefGoogle Scholar
  6. Blockley E et al (2013) Recent development of the Met Office operational ocean forecasting system: an overview and assessment of the new global FOAM forecasts. Geosci Model Dev Discuss 6:6219–6278. doi:10.5194/gmdd-6-6219-2013 CrossRefGoogle Scholar
  7. Chang YS, Zhang S, Rosati A, Delworth TL, Stern WF (2013) An assessment of oceanic variability for 1960–2010 from the GFDL ensemble coupled data assimilation. Clim Dyn 40:775–803. doi:10.1007/s00382-012-1412-2 CrossRefGoogle Scholar
  8. Chen D, Busalacchi AJ, Rothstein LM (1994) The roles of vertical mixing, solar-radiation, and wind stress in a model simulation of the sea-surface temperature seasonal cycle in the tropical Pacific-Ocean. J Geophys Res 99(C10):20345–20359CrossRefGoogle Scholar
  9. Danabasoglu G et al (2014) North Atlantic simulations in coordinated ocean-ice reference experiments phase II (CORE-II). Part I: Mean state. Ocean Model 73:76–107. doi:10.1016/j.ocemod.2013.10.005 CrossRefGoogle Scholar
  10. de Boyer Montégut C, Madec G, Fischer AS, Lazar A, Iudicone D (2004) Mixed layer depth over the global ocean: an examination of profile data and a profile-based climatology. J Geophys Res 109:C12003. doi:10.1029/2004JC002378 CrossRefGoogle Scholar
  11. Dodimead AJ (1967) Winter oceanographic conditions in the Central Subarctic Pacific. Int North Pac Comm 999:1–14Google Scholar
  12. Ferry N, Parent L, Garric G, Bricaud C, Testut CE, Le Galloudec O, Lellouche JM, Drévillon M, Greiner E, Barnier B, Molines JM, Jourdain N, Guinehut S, Zawadzki L (2012) GLORYS2V1 global ocean reanalysis of the altimetric era (1993–2009) at meso scale. Mercator Ocean Newsl 44:28–39Google Scholar
  13. Fujii Y, Nakaegawa N, Matsumoto S, Yasuda T, Yamanaka G, Kamachi M (2009) Coupled climate simulation by constraining ocean fields in a coupled model with ocean data. J Clim 22:5541–5557CrossRefGoogle Scholar
  14. Fukumori I (2002) A partitioned Kalman filter and smoother. Mon Weather Rev 130:1370–1383CrossRefGoogle Scholar
  15. Gnanadesikan A et al (2006) GFDL’s CM2 global coupled climate models. Part II: the baseline ocean simulation. J Clim 19:675–697. doi:10.1175/JCLI3630.1 CrossRefGoogle Scholar
  16. Guinehut S, Dhomps AL, Larnicol G, Le Traon PY (2012) High resolution 3D temperature and salinity fields derived from in situ and satellite observations. Ocean Sci 8:845–857. doi:10.5194/os-8-845-2012 CrossRefGoogle Scholar
  17. Haines K, Valdivieso M, Zuo H, Stepanov VN (2012) Transports and budgets in a 1/4° global ocean reanalysis 1989–2010. Ocean Sci 8(3):333–344. doi:10.5194/os-8-333-2012.002/qj.2063 CrossRefGoogle Scholar
  18. Hasumi H, Tatebe H, Kawasaki T, Kurogi M, Sakamoto TT (2010) Progress of North Pacific modelling over the past decade. Deep-Sea Res II 57:1188–1200. doi:10.1016/j.dsr2.2009.12.008 CrossRefGoogle Scholar
  19. Hosoda S, Ohira T, Sato K, Suga T (2010) Improved description of global mixed-865 layer depth using Argo profiling floats. J Oceanogr 66:773–787. doi:10.1007/s10872-866-010-0063-3 CrossRefGoogle Scholar
  20. Ingleby B, Huddleston M (2007) Quality control of ocean temperature and salinity profiles—historical and real-time data. J Mar Syst 65:158–175. doi:10.1016/j.jmarsys.2005.11.019 CrossRefGoogle Scholar
  21. Iwasaki S, Kubota M, Watabe T (2014) Assessment of various global freshwater flux products for the global ice-free oceans. Rem Sens Env 140:549–561. doi:10.1016/j.rse.2013.09.026 CrossRefGoogle Scholar
  22. Janssen PAEM (2012) Ocean wave effects on the daily cycle in SST. J Geophys Res 117:C00J32. doi:10.1029/2012JC007943
  23. Juza M, Penduff T, Brankart JM, Barnier B (2012) Estimating the distortion of mixed layer property distributions induced by the Argo sampling. J Oper Oceanogr 5:45–58CrossRefGoogle Scholar
  24. Katsura S, Oka E (2014) Formation mechanism of winter barrier layer in the subtropical Pacific. In: 2014 ocean science meeting, 23–28 Feb 2014, Honolulu, Hawaii, USAGoogle Scholar
  25. Köhl A (2014) Evaluation of the GECCO2 ocean synthesis: transports of volume, heat and freshwater in the Atlantic. Q J R Meteorol Soc. doi:10.1002/qj.2347 Google Scholar
  26. Köhl A, Sena Martins M, Stammer D (2014) Impact of assimilating surface salinity from SMOS on ocean circulation estimates. J Geophys Res 119:5449–5464. doi:10.1002/2014JC010040 CrossRefGoogle Scholar
  27. Lahoz W, Errera Q (2010) Constituent assimilation. In: Lahoz W, Khattatov B, Menard R (eds) Data assimilation, making sense of observations. Springer, New York, pp 449–490. doi:10.1007/987-3-540-74703-1 Google Scholar
  28. Large WG, McWilliams JC, Doney SC (1994) Oceanic vertical mixing: a review and a model with a nonlocal boundary layer parameterization. Rev Geophys 32:363–403CrossRefGoogle Scholar
  29. Lee T, Awaji T, Balmaseda MA, Grenier E, Stammer D (2009) Ocean state estimation for climate research. Oceanography 22:160–167. doi:10.5670/oceanog.2009.74 CrossRefGoogle Scholar
  30. Levitus S (1982) Climatological atlas of the world ocean. NOAA/ERL GFDL, PrincetonGoogle Scholar
  31. Locarnini RA, Mishonov AV, Antonov JI, Boyer TP, Garcia HE, Baranova OK, Zweng MM, Johnson DR (2010) World Ocean Atlas 2009, volume 1: temperature. In: Levitus S (ed) NOAA Atlas NESDIS 68. US Government Printing Office, Washington, p 184Google Scholar
  32. Lukas R, Lindstrom E (1991) The mixed layer of the western equatorial Pacific Ocean. J Geophys Res 96:3343–3357CrossRefGoogle Scholar
  33. Maes C, Ando K, Delcroix T, Kessler WS, McPhaden MJ, Roemmich D (2006) Observed correlation of surface salinity, temperature and barrier layer at the eastern edge of the western Pacific warm pool. Geophys Res Lett 33:L06601. doi:10.1029/2005GL024772 CrossRefGoogle Scholar
  34. Masuda S, Awaji T, Sugiura N, Matthews JP, Toyoda T, Kawai Y, Doi T, Kouketsu S, Igarashi H, Katsumata K, Uchida H, Kawano T, Fukasawa M (2010) Simulated rapid warming of abyssal North Pacific waters. Science 329:319–322. doi:10.1126/science.1188703 CrossRefGoogle Scholar
  35. Mochizuki T, Ishii M, Kimoto M, Chikamoto Y, Watanabe M, Nozawa T, Sakamoro TT, Shiogama H, Awaji T, Sugiura N, Toyoda T, Yasunaka S, Tatebe H, Mori M (2010) Pacific decadal oscillation hindcasts relevant to near-term climate prediction. Proc Natl Acad Sci USA 107:1833–1837. doi:10.1073/pnas.0906531107 CrossRefGoogle Scholar
  36. Morioka Y, Tozuka T, Masson S, Terray P, Luo JJ, Yamagata T (2012) Subtropical dipole modes simulated in a coupled general circulation model. J Clim 25:4029–4047. doi:10.1175/JCLI-D-11-00396.1 CrossRefGoogle Scholar
  37. Noh Y, Lee WS (2008) Prediction of the mixed and mixing layer depths from an OGCM. J Oceanogr 64:217–225. doi:10.1007/s10872-008-0017-1 CrossRefGoogle Scholar
  38. Noh Y, Kang YJ, Matsuura T, Iizuka S (2005) Effect of the Prandtl number in the parameterization of vertical mixing in an OGCM of the tropical Pacific. Geophys Res Lett 32:L23609. doi:10.1029/2005GL024540 CrossRefGoogle Scholar
  39. Palmer M, Balmaseda M, Chang YS, Chepurin G, Fujii Y, Good S, Guinehut S, Hernandez F, Martin M, Masuda S, Peterson KA, Toyoda T, Valdivieso M, Vernieres G, Wang O, Xue Y (2014) GLIVAR-GSOP/GODAE intercomparison of ocean heat content: initial results. CLIVAR EXCHANGES 64:8–10Google Scholar
  40. Pedlosky J (1996) Ocean circulation theory. Springer, Berlin. doi:10.1007/987-3-662-03204-6 CrossRefGoogle Scholar
  41. Shay LK, Goni GJ, Black PG (2000) Effects of a warm oceanic feature on Hurricane Opal. Mon Weather Rev 128:1366–1383CrossRefGoogle Scholar
  42. Smith G, Chevallier M, Lemieux JF, Dupont F, Vernieres G, Storto A, Toyoda T, Fujii Y, Chang Y, Valdivieso M, Peterson KA, Ferry N, Hernandez F, Balmaseda MA, Keeley S, Wang X (2014) Preliminary evaluation of sea ice fields form the ocean reanalyses intercomparison project. CLIVAR EXCHANGES 64:32–34Google Scholar
  43. Storto A, Dobricic S, Masina S, Di Pietro P (2011) Assimilating along-track altimetric observations through local hydrostatic adjustment in a global ocean variational assimilation system. Mon Weather Rev 139:738–754. doi:10.1175/2010MWR3350.1 CrossRefGoogle Scholar
  44. Suga T, Kato A, Hanawa K (2000) North Pacific Tropical Water: its climatology and temporal changes associated with the climate regime shift in the 1970s. Prog Oceanogr 47:223–256CrossRefGoogle Scholar
  45. Sugiura N, Awaji T, Masuda S, Mochizuki T, Toyoda T, Miyama T, Igarashi H, Ishikawa Y (2008) Development of a four-dimensional variational coupled data assimilation system for enhanced analysis and prediction of seasonal to interannual climate variations. J Geophys Res 113:C10017. doi:10.1029/2008JC004741 CrossRefGoogle Scholar
  46. Takeuchi E (2006) Studies on the wintertime shoaling of oceanic surface mixed layer. PhD thesis, University of TokyoGoogle Scholar
  47. Takeuchi E, Yasuda I (2003) Wintertime shoaling of oceanic surface mixed layer. Geophys Res Lett 30:2152. doi:10.1029/2003GL018511 Google Scholar
  48. Toyoda T, Awaji T, Ishikawa Y, Nakamura T (2004) Preconditioning of winter mixed layer in the formation of North Pacific eastern subtropical mode water. Geophys Res Lett 31:L17206. doi:10.1029/2004GL020677 CrossRefGoogle Scholar
  49. Toyoda T, Fujii Y, Yasuda T, Usui N, Iwao T, Kuragano T, Kamachi M (2013) Improved analysis of the seasonal-interannual fields by a global ocean data assimilation system. Theor Appl Mech Jpn 61:31–48. doi:10.11345/nctam.61.31 Google Scholar
  50. Toyoda T, Fujii Y, Kuragano T, Kamachi M, Ishikawa Y, Masuda S, Awaji T, Hernandez F, Ferry N, Guinehut S, Martin M, Peterson KA, Good S, Valdivieso M, Haines K, Storto A, Köhl A, Yin Y, Shi L, Smith G, Chang Y, Vernieres G, Wang X, Wang O, Lee T, Balmaseda M (2014) Mixed layer depth intercomparison among global ocean syntheses reanalyses. CLIVAR EXCHANGES 64:22–24Google Scholar
  51. Toyoda T, Fujii Y, Kuragano T, Matthews JP, Abe H, Ebuchi N, Usui N, Ogawa K, Kamachi M (2015) Improvements to a global ocean data assimilation system through the incorporation of Aquarius surface salinity data. Q J R Meteorol Soc. doi:10.1002/qj.2561 Google Scholar
  52. Umlauf L, Burchard H (2003) A generic length-scale equation for geophysical turbulence models. J Mar Res 61(2):235–265. doi:10.1357/002224003322005087 CrossRefGoogle Scholar
  53. Valdivieso M, Haines K, Balmaseda M, Barnier B, Chang Y, Ferry N, Fujii Y, Köhl A, Lee T, Martin M, Storto A, Toyoda T, Wang X, Waters J, Xue Y, Yin Y (2014) Heat fluxes from ocean and coupled reanalyses. CLIVAR EXCHANGES 64:28–31Google Scholar
  54. Vernieres G, Rienecker MM, Kovach R, Keppenne C (2012) The GEOS-iODAS: Description and evaluation. NASA Tech Rep Series on Global Modeling and Data Assimilation 30:TM-2012-104606, GSFC/NASA, Greenbelt, MD, USAGoogle Scholar
  55. Wunsch C, Heimbach P (2013) Dynamically and kinematically consistent global ocean circulation and ice state estimates. In: Sielder G, Griffies SM, Gould J, Church JA (eds) Ocean circulation and climate: a 21st century perspective. International Geophysics Series, vol 103. Academic Press, Oxford, pp 553–579. doi:10.1016/b978-0-12-391851-2.00021-0 CrossRefGoogle Scholar
  56. Xue Y, Balmaseda MA, Boyer T, Ferry N, Good S, Ishikawa I, Kumar A, Rienecker M, Rosati AJ, Yin Y (2012) A comparative analysis of upper-ocean heat content variability from an ensemble of operational ocean reanalyses. J Clim 25:6905–6929. dio:10.1175/JCLI-D-11-00542.1
  57. Yin Y, Alves O, Oke PR (2011) An ensemble ocean data assimilation system for seasonal prediction. Mon Weather Rev 139:786–808. doi:10.1175/2010MWR3419.1 CrossRefGoogle Scholar
  58. Yuan XJ, Talley LD (1996) The subarctic frontal zone in the North Pacific: characteristics of frontal structure from climatological data synoptic surveys. J Geophys Res 101:16491–16508CrossRefGoogle Scholar
  59. Zuo H, Balmaseda MA, Mogensen K (2014) The ECMWF-MyOcean2 eddy-permitting ocean and sea-ice re-analysis ORAP5. Part 1: implementation. Tech Rep 736, ECMWF, Reading, UKGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • Takahiro Toyoda
    • 1
  • Yosuke Fujii
    • 1
  • Tsurane Kuragano
    • 1
  • Masafumi Kamachi
    • 1
  • Yoichi Ishikawa
    • 2
  • Shuhei Masuda
    • 3
  • Kanako Sato
    • 3
  • Toshiyuki Awaji
    • 2
    • 4
  • Fabrice Hernandez
    • 5
    • 6
  • Nicolas Ferry
    • 6
  • Stéphanie Guinehut
    • 7
  • Matthew J. Martin
    • 8
  • K. Andrew Peterson
    • 8
  • Simon A. Good
    • 8
  • Maria Valdivieso
    • 9
  • Keith Haines
    • 9
  • Andrea Storto
    • 10
  • Simona Masina
    • 10
    • 11
  • Armin Köhl
    • 12
  • Hao Zuo
    • 13
  • Magdalena Balmaseda
    • 13
  • Yonghong Yin
    • 14
  • Li Shi
    • 14
  • Oscar Alves
    • 14
  • Gregory Smith
    • 15
  • You-Soon Chang
    • 16
    • 17
  • Guillaume Vernieres
    • 18
    • 19
  • Xiaochun Wang
    • 20
  • Gael Forget
    • 21
  • Patrick Heimbach
    • 21
  • Ou Wang
    • 22
  • Ichiro Fukumori
    • 22
  • Tong Lee
    • 22
  1. 1.Oceanography and Geochemistry Research DepartmentMeteorological Research Institute, Japan Meteorological Agency (MRI/JMA)TsukubaJapan
  2. 2.Center for Earth Information Science and Technology, Japan Agency for Marine-Earth Science and Technology (CEIST/JAMSTEC)YokohamaJapan
  3. 3.Research and Development Center for Global Change (RCGC)JAMSTECYokosukaJapan
  4. 4.Kyoto UniversityKyotoJapan
  5. 5.Institut de Recherche pour le Développement (IRD)ToulouseFrance
  6. 6.Mercator OcéanRamonville Sant-AgneFrance
  7. 7.Collecte Localisation Satellites (CLS)Ramonville Sant-AgneFrance
  8. 8.Met Office (UKMO)ExeterUK
  9. 9.National Centre for Earth Observation (NCEO), Department of MeteorologyUniversity of Reading (U-Reading)ReadingUK
  10. 10.Centro Euro-Mediterraneo sui Cambiamenti Climatici (CMCC)BolognaItaly
  11. 11.Istituto Nazionale di Geofisica e Vulcanologia (INGV)BolognaItaly
  12. 12.Universität Hamburg (U-Hamburg)HamburgGermany
  13. 13.European Centre for Medium-Range Weather Forecasts (ECMWF)ReadingUK
  14. 14.Centre for Australian Weather and Climate ResearchBureau of Meteorology (BOM)MelbourneAustralia
  15. 15.Environment CanadaQuébecCanada
  16. 16.Geophysical Fluid Dynamics Laboratory, National Oceanic and Atmospheric Administration (GFDL/NOAA)PrincetonUSA
  17. 17.Kongju National UniversityKongjuSouth Korea
  18. 18.Science System and Applications, Inc.LanhamUSA
  19. 19.Global Modeling and Assimilation Office, National Aeronautics and Space Administration Goddard Space Flight Center (GSFC/NASA/GMAO)GreenbeltUSA
  20. 20.Joint Institute for Regional Earth System Science and EngineeringUniversity of CaliforniaLos AngelesUSA
  21. 21.Department of Earth, Atmospheric and Planetary SciencesMassachusetts Institute of Technology (MIT)CambridgeUSA
  22. 22.Jet Propulsion Laboratory (JPL)California Institute of TechnologyPasadenaUSA

Personalised recommendations