Advertisement

Climate Dynamics

, Volume 46, Issue 1–2, pp 449–466 | Cite as

Recent wave climate and expected future changes in the seasonally ice-infested waters of the Gulf of St. Lawrence, Canada

  • Benoit Ruest
  • Urs Neumeier
  • Dany Dumont
  • Eliott Bismuth
  • Simon Senneville
  • James Caveen
Article

Abstract

A new method is developed to evaluate the wave climate in the Gulf of St. Lawrence (GSL) with the consideration of wave attenuation by sea ice. Ice concentrations outputs from a regional oceanic model are used to attenuate, in post-processing, significant wave height (H s ) time-series simulated with a parametric wave model for ice-free conditions. Reanalysis data is used to compute GSL wave climate for the 1981–2010 period with and without wave attenuation by sea ice. Outputs from two simulations from the Canadian Regional Climate Model are also used to evaluate how GSL wave climate should evolve during the twenty first century according to the SRES-A2 greenhouse gases emission scenario. Results show that sea ice has reduced extreme H s on the GSL by about 12 % on average over the 1981–2010 period but its impact on wave climate should become negligible by 2100 except in the St. Lawrence Estuary. Over the twenty first century, an increase of extreme H s on the GSL should be expected mostly because of the reduction of sea ice. On the other hand, little changes in the extreme wave climate should be expected as a response to changes in the wind regime over the GSL. For future coastal engineering applications, the GSL wave climate could be evaluated by supposing an ice-free sea to integrate the likely impact of future climate change.

Keywords

Wave climate Climate change Parametric wave model Sea ice Wave–ice interactions Gulf of St. Lawrence 

Notes

Acknowledgments

This project is a contribution to the research program of Québec-Océan and was funded by the government of Québec (Ministère des Transports du Québec). B. Ruest received research scholarships from the Fonds québécois de la recherche sur la nature et les technologies (FRQNT) and from the National Sciences and Engineering Research Council of Canada (NSERC). We thank the Ouranos consortium for providing CRCM simulations data. The ROM sea ice simulations for the GSL were also funded by the Ministère des Transports du Québec (project of S.S.) and we thank Simon St-Onge Drouin (ISMER) for his work on these simulations. We are also very grateful toward Adrien Lambert for his interest and ideas regarding the project. Finally, we thank the anonymous reviewers for their constructive comments, which helped us to improve the manuscript.

References

  1. Bidlot JR, Doble MJ, Tang Y (2013) Inclusion of sea ice attenuation in an operational wave model. In: 13th international workshop on wave hindcasting and forecasting and 4th coastal hazard symposium, Banff, Canada, p 23Google Scholar
  2. Broman B, Hammarklint T, Rannat K, Soomere T, Valdmann A (2006) Trends and extremes of wave fields in the north-eastern part of the Baltic Proper. Oceanologia 48(S):165–184Google Scholar
  3. Bryant EA, McCann SB (1972) A note on wind and wave conditions in the Southern Gulf of St. Lawrence. Marit Sed 8:101–103Google Scholar
  4. Cavaleri L, Bertotti L (2004) Accuracy of the modelled wind and wave fields in enclosed seas. Tellus A 56:167–175CrossRefGoogle Scholar
  5. Caya D, Laprise R (1999) A semi-implicit semi-lagrangian regional climate model: the Canadian RCM. Mon Weather Rev 127:341–362CrossRefGoogle Scholar
  6. Charles E, Idier D, Delecluse P, Déqué M, Cozannet G (2012) Climate change impact on waves in the Bay of Biscay, France. Ocean Dyn 62:831–848CrossRefGoogle Scholar
  7. Coles S (2001) An introduction to statistical modeling of extreme values. Springer, LondonCrossRefGoogle Scholar
  8. Côté J, Desmarais JG, Gravel S, Méthot A, Patoine A, Roch M, Staniforth A (1998a) The operational CMC-MRB global environmental multiscale (GEM) model. Part II: results. Mon Weather Rev 126:1397–1418CrossRefGoogle Scholar
  9. Côté J, Gravel S, Méthot A, Patoine A, Roch M, Staniforth A (1998b) The operational CMC-MRB global environmental multiscale (GEM) model. Part I: design considerations and formulation. Mon Weather Rev 126:1373–1395CrossRefGoogle Scholar
  10. Desjardins L, Ouellet Y (1984) Modèles numériques utilisés pour la conception des ouvrages maritimes. Comptes rendus du Colloque sur la Simulation numérique appliquée au domaine la Ressource hydrique, dans le cadre du 52e congrès Annuel l’ACFAS. Centre de recherches sur l’eau, Université Laval, Canada, pp 187–224Google Scholar
  11. Dumont D, Kohout AL, Bertino L (2011) A wave-based model for the marginal ice zone including a floe breaking parameterization. J Geophys Res 116:1–12Google Scholar
  12. Ewing L (2009) Sea level rise: major implications to coastal engineering and coastal management. In: Kim YC (ed) Handbook of coastal and ocean engineering. World Scientific Publishing, New Jersey, pp 997–1021CrossRefGoogle Scholar
  13. Forbes DL, Manson GK, Chagnon R, Solomon S M, van der Sanden JJ, Lynds TL (2002) Nearshore ice and climate change in the southern Gulf of St. Lawrence. In: Ice in the environment. Proceedings of the 16th IAHR international symposium on ice, Dunedin, New Zealand, pp 344–351Google Scholar
  14. Galbraith PS, Chassé J, Larouche P, Gilbert D, Brickman D, Pettigrew B, Devine L, Lafleur C (2013) Physical oceanographic conditions in the Gulf of St. Lawrence in 2012. DFO Canadian Science Advisory Secretariat Research Document 2013/026Google Scholar
  15. Grabemann I, Weisse R (2008) Climate change impact on extreme wave conditions in the North Sea: an ensemble study. Ocean Dyn 58:199–212CrossRefGoogle Scholar
  16. Groll N, Hünicke B (2012) Baltic Sea wave conditions in a changing climate. EGU General Assembly 2012Google Scholar
  17. Groll N, Grabemann I, Gaslikova L (2014) North Sea wave conditions: an analysis of four transient future climate realizations. Ocean Dyn 64:1–12CrossRefGoogle Scholar
  18. Hemer MA, Wang XL, Weisse R, COWCLIP-Team (2011) WCRP-JCOMM workshop on coordinated global wave climate projections (COWCLIP). WMO/TD-No. 1581, Geneva, SwitzerlandGoogle Scholar
  19. Hemer MA, Katzfey J, Trenham CE (2013) Global dynamical projections of surface ocean wave climate for a future high greenhouse gas emission scenario. Ocean Model 70:221–245CrossRefGoogle Scholar
  20. Hill BT, Ruffman A, Drinkwater K (2002) Historical record of the incidence of sea ice on the Scotian Shelf and the Gulf of St. Lawrence. In: Ice in the environment. Proceedings of the 16th IAHR international symposium on ice, Dunedin, New Zealand, pp 313–320Google Scholar
  21. Hundecha Y, St-Hilaire A, Ouarda TBMJ, El Adlouni S, Gachon P (2008) A nonstationary extreme value analysis for the assessment of changes in extreme annual wind speed over the Gulf of St. Lawrence, Canada. J Appl Meteorol Climatol 47:2745–2759CrossRefGoogle Scholar
  22. IPCC (2013) Climate change 2013: the physical basis. Contribution of working group I to the fifth assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambrige, UKGoogle Scholar
  23. Johnston DW, Friedlaender AS, Torres LG, Lavigne DM (2005) Variation in sea ice cover on the east coast of Canada from 1969 to 2002: climate variability and implications for harp and hooded seals. Clim Res 29:209–222CrossRefGoogle Scholar
  24. Jungclaus JH, Keenlyside N, Botzet M, Haak H, Luo JJ, Latif M, Marotzke J, Mikolajewicz U, Roeckner E (2006) Ocean circulation and tropical variability in the coupled model ECHAM5/MPI-OM. J Clim 19:3952–3972CrossRefGoogle Scholar
  25. Knuuti K (2002) Planning for sea level rise: U.S. Army Corps of Engineers policy. In: Proceedings of the solutions to coastal disasters 2002 conference, pp 549–560Google Scholar
  26. Komar PD, Allan JC, Ruggiero P (2009) Ocean wave climates: trends and variations due to earth’s changing climate. In: Kim YC (ed) Handbook of coastal and ocean engineering. World Scientific Publishing, New Jersey, pp 971–995CrossRefGoogle Scholar
  27. Lionello P, Sanna A (2005) Mediterranean wave climate variability and its links with NAO and Indian Monsoon. Clim Dyn 25:611–623CrossRefGoogle Scholar
  28. Lionello P, Cogo S, Galati MB, Sanna A (2008) The Mediterranean surface wave climate inferred from future scenario simulations. Glob Planet Change 63:152–162CrossRefGoogle Scholar
  29. Liu AK, Mollo-Christensen E (1988) Wave propagation in a solid ice pack. J Phys Oceanogr 18:1702–1712CrossRefGoogle Scholar
  30. Mailhot J, Bélair S, Lefaivre L, Bilodeau B, Desgagné M, Girard C, Glazer A, Leduc AM, Méthot A, Patoine A, Plante A, Rahill A, Robinson T, Talbot D, Tremblay A, Vaillancourt P, Zadra A, Qaddouri A (2006) The 15-km version of the Canadian regional forecast system. Atmos Ocean 44:133–149CrossRefGoogle Scholar
  31. Mearns LO, Arritt R, Biner S, Bukovsky MS, McGinnis S, Sain S, Caya D, Correia J Jr, Flory D, Gutowski W, Takle ES, Jones R, Leung R, Moufouma-Okia W, McDaniel L, Nunes AMB, Qian Y, Roads J, Sloan L, Snyder M (2012) The north American regional climate change assessment program: overview of phase I results. Bull Am Meteorol Soc 93:1337–1362CrossRefGoogle Scholar
  32. Mesinger F, DiMego G, Kalnay E, Mitchell K, Shafran P, Ebisuzaki W, Jović D, Woollen J, Rogers E, Berbery EH, Ek MB, Fan Y, Grumbine H, Li H, Lin Y, Minikin G, Parrish D, Shi W (2006) North American regional reanalysis. Bull Am Meteorol Soc 87:343–360CrossRefGoogle Scholar
  33. Music B, Caya D (2007) Evaluation of the hydrological cycle over the Mississippi River basin as simulated by the Canadian Regional Climate Model (CRCM). J Hydrometeorol 8:969–988CrossRefGoogle Scholar
  34. Nakicenovic N, Alcamo J, Davis G, de Vries B, Fenhann J, Gaffin S, Gregory K, Grubler A, Jung TY, Kram T (2000) Special report on emissions scenarios: a special report of working group III of the intergovernmental panel on climate change. Cambridge University Press, Cambridge, UKGoogle Scholar
  35. Nicholls RJ, Wong P, Burkett V, Woodroffe CD, Hay J (2008) Climate change and coastal vulnerability assessment: scenarios for integrated assessment. Sustain Sci 3:89–102CrossRefGoogle Scholar
  36. Ouellet Y, Drouin A (1991) Définition des conditions de vagues pour la conception d’un havre de pêche à Sept-Îles. Can J Civ Eng 18:851–863CrossRefGoogle Scholar
  37. Resio DT, Bratos SM, Thompson EF (2002) Meteorology and wave climate. In: Vincent L, Demirbilek Z (eds) Coastal engineering manual, engineering manual 1110-2-1100. USACE, Washington, pp 1–72Google Scholar
  38. Rienecker MM, Suarez MJ, Gelaro R, Todling R, Bacmeister J, Liu E, Bosilovich MG, Shubert SD, Takacs L, Kim GK, Bloom S, Chen J, Collins D, Conaty A, da Silva A, Gu W, Joiner J, Koster RD, Lucchesi R, Molod A, Owens T, Pawson S, Pegion P, Redder CR, Reichle R, Robertson FR, Ruddick AG, Sienkiewicz M, Woollen J (2011) MERRA: NASA’s modern-era retrospective analysis for research and applications. J Clim 24:3624–3648CrossRefGoogle Scholar
  39. Ruest B, Neumeier U, Dumont D, Lambert A (2013) Wave climate evaluation in the Gulf of St. Lawrence with a parametric wave model. In: Proceedings of coastal dynamics 2013, Arcachon, France, pp 1363–1374Google Scholar
  40. Saucier FJ, Roy F, Gilbert D, Pellerin P, Ritchie H (2003) Modeling the formation and circulation processes of water masses and sea ice in the Gulf of St. Lawrence, Canada. J Geophys Res Ocean 108:3269CrossRefGoogle Scholar
  41. Savard JP, Bernatchez P, Morneau F, Saucier FJ (2009) Vulnérabilité des communautés côtières de l’est du Québec aux impacts des changements climatiques. La Houille Blanche 2009:59–66CrossRefGoogle Scholar
  42. Saville T (1954) The effect of fetch width on wave generation. USACE, Beach Erosion Board, Technical Memorandum 70Google Scholar
  43. Scinocca JF, McFarlane NA, Lazare M, Li J, Plummer D (2008) Technical note: the CCCma third generation AGCM and its extension into the middle atmosphere. Atmos Chem Phys 8:7055–7074CrossRefGoogle Scholar
  44. Senneville S, St-Onge Drouin S, Dumont D, Bihan-Poudec AC, Belemaalem Z, Corriveau M, Bernatchez P, Bélanger S, Tolszczuk-Leclerc S, Villeneuve R (2014) Rapport final : Modélisation des glaces dans l’estuaire et le golfe du Saint-Laurent dans la perspective des changements climatiques. Rapport final présenté au Ministère des Transports du Québec, ISMER-UQAR. http://www.bv.transports.gouv.qc.ca/mono/1147874.pdf. Accessed February 6 2015
  45. Smith RL (1984) Threshold methods for sample extremes. In: Tiago de Oliveira J (ed) Statistical extremes and applications. Reidel, Dordrecht, pp 621–638CrossRefGoogle Scholar
  46. Smith GC, Roy F, Brasnett B (2013) Evaluation of an operational ice–ocean analysis and forecasting system for the Gulf of St Lawrence. Q J R Meteorol Soc 139:419–433CrossRefGoogle Scholar
  47. Soomere T, Räämet A (2014) Decadal changes in the Baltic Sea wave heights. J Mar Syst 129:86–95CrossRefGoogle Scholar
  48. Squire VA (2007) Of ocean waves and sea-ice revisited. Cold Reg Sci Technol 49:110–133CrossRefGoogle Scholar
  49. Squire VA, Dugan JP, Wadhams P, Rottier PJ, Liu AK (1995) Of ocean waves and sea ice. Annu Rev Fluid Mech 27:115–168CrossRefGoogle Scholar
  50. Tolman HL (2003) Treatment of unresolved islands and ice in wind wave models. Ocean Model 5:219–231CrossRefGoogle Scholar
  51. Tuomi L, Kahma KK, Pettersson H (2011) Wave hindcast statistics in the seasonally ice-covered Baltic Sea. Boreal Environ Res 16:451–472Google Scholar
  52. Von Storch H, Zwiers FW (2001) Statistical analysis in climate research. Cambridge University Press, CambridgeGoogle Scholar
  53. Wadhams P (1983) A mechanism for the formation of ice edge bands. J Geophys Res Ocean 88:2813–2818CrossRefGoogle Scholar
  54. Wang R, Shen H (2013) On developing a continuum model for wave propagation in ice covered seas. In: Huang W, Wang KH, Chen QJ (eds) Coastal Hazards. American Society of Civil Engineers, Reston, USA, pp 24–32CrossRefGoogle Scholar
  55. Wang XL, Swail VR (2006) Historical and possible future changes of wave heights in Northern hemisphere oceans. In: Perrie W (ed) Atmosphere ocean interactions, vol 2. WIT Press, Boston, pp 185–210CrossRefGoogle Scholar
  56. Wang XL, Zwiers FW, Swail VR (2004) North Atlantic ocean wave climate change scenarios for the twenty-first century. J Clim 17:2368–2383CrossRefGoogle Scholar
  57. Wang XL, Wan H, Swail VR (2006) Observed changes in cyclone activity in Canada and their relationships to major circulation regimes. J Clim 19:896–915CrossRefGoogle Scholar
  58. Weisse R, von Storch H (2010) Marine climate and climate change. Storms, wind waves and storm surges. Praxis Publishing, ChichesterCrossRefGoogle Scholar
  59. Williams TD, Bennetts LG, Squire VA, Dumont D, Bertino L (2013a) Wave–ice interactions in the marginal ice zone. Part 1: theoretical foundations. Ocean Model 71:81–91CrossRefGoogle Scholar
  60. Williams TD, Bennetts LG, Squire VA, Dumont D, Bertino L (2013b) Wave–ice interactions in the marginal ice zone. Part 2: numerical implementation and sensitivity studies along 1D transects of the ocean surface. Ocean Model 71:92–101CrossRefGoogle Scholar
  61. Winterfeldt J, Weisse R (2009) Assessment of value added for surface marine wind speed obtained from two regional climate models. Mon Weather Rev 137:2955–2965CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • Benoit Ruest
    • 1
  • Urs Neumeier
    • 1
  • Dany Dumont
    • 1
  • Eliott Bismuth
    • 1
  • Simon Senneville
    • 1
  • James Caveen
    • 1
  1. 1.Institut des sciences de la mer de Rimouski (ISMER)Université du Québec à RimouskiRimouskiCanada

Personalised recommendations