Advertisement

Climate Dynamics

, Volume 46, Issue 1–2, pp 41–55 | Cite as

Quantifying some of the impacts of dust and other aerosol on the Caspian Sea region using a regional climate model

  • N. ElguindiEmail author
  • F. Solmon
  • U. Turuncoglu
Article

Abstract

The Central Asian deserts are a major dust source region that can potentially have a substantial impact on the Caspian Sea. Despite major advances in the modeling and prediction of the Caspian Sea Level (CSL) during recent years, no study to date has investigated the climatic effects of dust on the hydrological budget of the Sea. In this study, we utilize a regional climate model coupled to an interactive emission and transport scheme to simulate the effects of dust and other aerosol in the Caspian region. First, we present a validation of the model using a variety of AOD satellite observations as well as a climatology of dust storms. Compared to the range of satellite estimates, the model’s AOD climatology is closer to the lower end of the observations, and exhibit a significant underestimation over the clay deserts found on the Ustyurt plateau and north of the Aral Sea. Nevertheless, we find encouraging results in that the model is able to reproduce the gradient of increasing AOD intensity from the middle to the southern part of the Sea. Spatially, the model reproduces reasonably well the observed climatological dust storm frequency maps which show that the most intense dust source regions to be found in the Karakum desert in Turkmenistan and Kyzylkum desert in Uzbekistan east of the Aral Sea. In the second part of this study we explore some impacts of dust and other aerosol on the climatology of the region and on the energy budget of the Sea. We find that the overall direct radiative effects of dust and other aerosol reduce the amount of shortwave radiation reaching the surface, dampen boundary layer turbulence and inhibit convection over the region. We also show that by including dust and aerosol in our simulation, we are able to reduce the positive biases in sea surface temperatures by 1–2 °C. Evaporation is also considerably reduced, resulting in an average difference of approximately \(10~\hbox {mm}~\hbox {year}^{-1}\) in the Sea’s hydrological budget which is substantial. These findings prove that an accurate projection of climate-induced changes to the CSL must include the effects of dust and other aerosol.

Keywords

Dust Dust Storm Aerosol Optical Depth Caspian Basin Dust Source Region 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

We wish to express our gratitude to the anonymous reviewers whose insightful comments helped to improve the quality of this manuscript.

References

  1. Abbasova T (2010) Detection and analysis of changes in desertification in the Caspian Sea region, Master’s thesis, Stockholm UniversityGoogle Scholar
  2. Acker JG, Leptoukh G (2007) Online analysis enhances use of NASA earth science data. Eos Trans Am Geophys Union 88(2):14–17CrossRefGoogle Scholar
  3. Argaman E, Singer A, Tsoar H (2006) Erodibility of some crust forming soils/sediments from the Southern Aral Sea Basin as determined in a wind tunnel. Earth Surf Process Landf 31(1):47–63CrossRefGoogle Scholar
  4. Arpe K, Leroy SA (2007) The Caspian Sea Level forced by the atmospheric circulation, as observed and modelled. Quat Int 173–174:144–152CrossRefGoogle Scholar
  5. CACLIM (2010) Central Asia atlas of natural resources, asian development bank, 6 ADB avenue, Mandaluyong City 1550 Metro Manila, PhilippinesGoogle Scholar
  6. Cavazos C, Todd MC, Schepanski K (2009) Numerical model simulation of the Saharan dust event of 6–11 March 2006 using the Regional Climate Model version 3 (RegCM3). J Geophys Res 114:D12109. doi: 10.1029/2008JD011078 CrossRefGoogle Scholar
  7. Christopher SA, Jones TA (2010) Satellite and surface-based remote sensing of Saharan dust aerosols. Remote Sens Environ 114(5):1002–1007CrossRefGoogle Scholar
  8. Christopher SA, Gupta P, Haywood J, Greed G (2008) Aerosol optical thicknesses over North Africa: 1. Development of a product for model validation using Ozone Monitoring Instrument, Multiangle Imaging Spectroradiometer, and Aerosol Robotic Network. J Geophys Res 113:D00C04. doi: 10.1029/2007JD009446 Google Scholar
  9. Darmenova K, Sokolik I (2007) Assessing uncertainies in dust emission in the Aral Sea region caused by meteorological fields predicted with a mesoscale model. Glob Planet Change 56. doi: 10.1016/j.gloplacha.2006.07.024
  10. Diner DJ, Beckert JC, Bothwell GW, Rodriguez JI (2002) Performance of the MISR instrument during its first 20 months in Earth orbit. Geosci Remote Sens IEEE Trans 40(7):1449–1466CrossRefGoogle Scholar
  11. Elguindi N, Giorgi F (2006a) Projected changes in the Caspian Sea level for the 21st century based on the latest AOGCM simulations. Geophys Res Lett 33(L08706). doi: 10.1029/2006GL025943
  12. Elguindi N, Giorgi F (2006b) Simulating multi-decadal variability of Caspian Sea level changes using regional climate model outputs. Clim Dyn 26. doi: 10.1007/s00382-005-0077-5
  13. Elguindi N, Giorgi F (2007) Simulating future Caspian sea level changes using regional climate model outputs. Clim Dyn 28:365–379. doi: 10.1007/s00382-006-0185-x CrossRefGoogle Scholar
  14. Gettelman A, Liu X, Barahona D, Lohmann U, Chen C (2012) Climate impacts of ice nucleation. J Geophys Res 117:D20201. doi: 10.1029/2012JD017950 Google Scholar
  15. Giorgi F, Coppola E, Solmon F, Mariotti L, Sylla M, Bi X, Elguindi N, Diro G, Nair V, Giuliani G, Turuncoglu U, Cozzini S, Guttler I, O’Brien T, Tawfik A, Shalaby A, Zakey A, Steiner A, Stordal F, Sloan L, Brankovic C (2012) RegCM4: model description and preliminary tests over multiple CORDEX domains. Clim Res 52. doi: 10.3354/cr01018
  16. Golitsyn G, Meleshko V, Mesherskaia A, Mokhov I, Pavlova T, Galin V, Senatorsky A (1995) GCM simulation of water and heat balance over the Caspian Sea and the adjacent watershed (Diagnostic Subproject 24). In First International AMIP Scientific ConferenceGoogle Scholar
  17. Holben B, Eck T, Slutsker I, Tanre D, Buis J, Setzer A, Vermote E, Reagan J, Kaufman Y, Nakajima T et al (1998) AERONET? federated instrument network and data archive for aerosol characterization. Remote Sens Environ 66(1):1–16CrossRefGoogle Scholar
  18. Hostetler S, Bates G, Giorgi F (1993) Interactive coupling of a lake thermal model with a regional climate model. J Geophys Res 98. doi: 10.1029/92JD02843
  19. Hsu NC, Tsay SC, King MD, Herman JR (2006) Deep blue retrievals of Asian aerosol properties during ACE-Asia. Geosci Remote Sens IEEE Trans 44(11):3180–3195CrossRefGoogle Scholar
  20. Ibrayev R, Ozsoy E, Schrum C, Sur H (2010) Seasonal variability of the Caspian Sea three-dimensional circulation, sea level and air-sea interaction. Ocean Sci 6:311–329CrossRefGoogle Scholar
  21. Indoitu R, Orlovsky L, Orlovsky N (2012) Dust storms in Central Asia: spatial and temporal variations. J Arid Environ 85. doi:10:1016/j.jaridenv.2012.03.018Google Scholar
  22. Kahn RA, Gaitley BJ, Martonchik JV, Diner DJ, Crean KA, Holben B (2005) Multiangle Imaging Spectroradiometer (MISR) global aerosol optical depth validation based on 2 years of coincident Aerosol Robotic Network (AERONET) observations. J Geophys Res 110:D10S04. doi: 10.1029/2004JD004706 Google Scholar
  23. Kahn RA, Gaitley BJ, Garay MJ, Diner DJ, Eck TF, Smirnov A, Holben BN (2010) Multiangle Imaging SpectroRadiometer global aerosol product assessment by comparison with the Aerosol Robotic Network. J Geophys Res 115:D23209. doi: 10.1029/2010JD014601 CrossRefGoogle Scholar
  24. Karydis VA, Kumar P, Barahona D, Sokolik IN, Nenes A (2011) On the effect of dust particles on global cloud condensation nuclei and cloud droplet number. J Geophys Res 116:D23204. doi: 10.1029/2011JD016283 Google Scholar
  25. Kiehl JT, Hack JJ, Bonan GB, Boville BA, Briegleb BP, Williamson DL, Rasch PJ (1996) Description of the NCAR Community Climate Model (CCM3). NCAR Technical Note NCAR/TN-420+STR. doi: 10.5065/D6FF3Q99
  26. Konare A, Zakey AS, Solmon F, Giorgi F, Rauscher S, Ibrah S, Bi X (2008) A regional climate modeling study of the effect of desert dust on the West African monsoon. J Geophys Res 113:D12206. doi: 10.1029/2007JD009322 CrossRefGoogle Scholar
  27. Koven CD, Fung I (2008) Identifying global dust source areas using high-resolution land surface form. J Geophys Res 113:D22204. doi: 10.1029/2008JD010195 CrossRefGoogle Scholar
  28. Lamarque JF, Bond TC, Eyring V, Granier C, Heil A, Klimont Z, Lee D, Liousse C, Mieville A, Owen B et al (2010) Historical (1850–2000) gridded anthropogenic and biomass burning emissions of reactive gases and aerosols: methodology and application. Atmos Chem Phys 10(15):7017–7039CrossRefGoogle Scholar
  29. Legates D, Willmott C (1990) Mean seasonal and spatial variability in gauge-corrected, global precipitation. Int J Climatol 10:111–127CrossRefGoogle Scholar
  30. MacCallum S, Merchant C (2011) ARC-lake validation report, Tech. Rep. v1.0. School of GeoSciences, The University of EdinburghGoogle Scholar
  31. Mahowald N, Ballantine J, Feddema J, Ramankutty N (2007) Global trends in visibility: implications for dust sources. Atmos Chem Phys 7(12):3309–3339CrossRefGoogle Scholar
  32. Malavelle F, Mallet M, Pont V, Liousse C, Solmon F (2011) Long-term simulations (2001–2006) of biomass burning and mineral dust optical properties over West Africa: comparisons with new satellite retrievals. Atmos Chem Phys Discuss 11(10):28587–28626CrossRefGoogle Scholar
  33. Martonchik JV, Diner DJ, Kahn R, Gaitley B, Holben BN (2004) Comparison of MISR and AERONET aerosol optical depths over desert sites. Geophys Res Lett 31. doi: 10.1029/2004GL019807
  34. Menut L, Perez Garcia-Pando C, Haustein K, Bessagnet B, Prigent C, Alfaro S (2013) Relative impact of roughness and soil texture on mineral dust emission fluxes modeling. J Geophys Res Atmos 118:6505–6520. doi: 10.1002/jgrd.50313 CrossRefGoogle Scholar
  35. Micklin P (2006) The Aral Sea disaster. Annu Rev Earth Planet Sci 35. doi: 10.1146/annurev.earth.35.031306.140120
  36. New M, Hulme M, Jones P (2000) Representing twentieth-century spacetime climate variability. Part II: development of 1901–96 monthly grids of terrestrial surface climate. J Clim 13:2217–2238CrossRefGoogle Scholar
  37. Orlovsky L, Kaplan S, Orlovsky N, Blumberg D, Mamedov E (2006) Monitoring land use and land cover changes in Turkmenistan using remote sensing. Manag Nat Resour Sustain Dev Ecol Hazards 99. doi: 10.2495/RAV060461
  38. Rodionov S (1994) Global and regional climate interaction: the Caspian Sea experience. Kluwer Academic, DordrechtCrossRefGoogle Scholar
  39. Sayer AM, Hsu NC, Bettenhausen C, Ahmad Z, Holben BN, Smirnov A, Thomas GE, Zhang J (2012a) SeaWiFS Ocean Aerosol Retrieval (SOAR): algorithm, validation, and comparison with other data sets. J Geophys Res 117:D03206. doi: 10.1029/2011JD016599 Google Scholar
  40. Sayer A, Hsu N, Bettenhausen C, Jeong MJ, Holben B, Zhang J (2012b) Global and regional evaluation of over-land spectral aerosol optical depth retrievals from SeaWiFS. Atmos Meas Tech 5(7):1761–1778CrossRefGoogle Scholar
  41. Seigel R, van den Heever S, Saleeby S (2013) Mineral dust indirect effects and cloud radiative feedbacks of a simulated idealized nocturnal squall line. Atmos Chem Phys 13(8):4467–4485CrossRefGoogle Scholar
  42. Shi Y, Zhang J, Reid J, Hyer E, Eck T, Holben B, Kahn R (2011) A critical examination of spatial biases between MODIS and MISR aerosol products-application for potential AERONET deployment. Atmos Meas Tech 4(12):2823–2836CrossRefGoogle Scholar
  43. Singer A, Zobeck T, Poberezsky L, Argaman E (2003) The \(\text{ PM }_{10}\) and \(\text{ PM }_{2.5}\) dust generation potential of soils/sediments in the Southern Aral Sea Basin, Uzbekistan. J Arid Environ 54(4):705–728CrossRefGoogle Scholar
  44. Small E, Giorgi F, Sloan L, Hostetler S (2001) The effects of desiccation and climatic change on the hydrology of the Aral Sea. J Clim 14:300–322CrossRefGoogle Scholar
  45. Small E, Sloan L, Hosteller S, Giorgi F (1999) Simulating the water balance of the Aral Sea with a coupled regional climate-lake model. J Geophys Res 104. doi: 10.1029/98JD02348
  46. Solmon F, Giorgi F, Liousse C (2006) Aerosol modelling for regional climate studies: application to anthropogenic particles and evaluation over a European/African domain. Tellus B 58(1):51–72CrossRefGoogle Scholar
  47. Solmon F, Mallet M, Elguindi N, Giorgi F, Zakey A, Konaré A (2008) Dust aerosol impact on regional precipitation over western Africa, mechanisms and sensitivity to absorption properties. Geophys Res Lett 35:L24705. doi: 10.1029/2008GL035900 CrossRefGoogle Scholar
  48. Solmon F, Elguindi N, Mallet M (2012) Radiative and climatic effects of dust over West Africa, as simulated by a regional climate model. Clim Res 52:97–113CrossRefGoogle Scholar
  49. Turuncoglu U, Elguindi N, Giorgi F, Fournier N, Giuliani G (2013) Development and validation of a regional coupled atmosphere lake model for the Caspian Sea. Clim Dyn 41. doi: 10.1007/s00382-012-1623-6
  50. Uppala S, Dee D, Kobayashi S, Berrisford P, Simmons A (2008) Towards a climate adapt assimilation system: status update of ERA-Interim. ECMWF Newsletter pp. 12–18Google Scholar
  51. WIllmott C, Matsuura K (1995) Smart interpolation of annually averaged air temperature in the United States. J Appl Meteorol 34:2577–2586CrossRefGoogle Scholar
  52. Xia X, Zong X (2009) Shortwave versus longwave direct radiative forcing by Taklimakan dust aerosols. Geophys Res Lett 36:L07803. doi: 10.1029/2009GL037237 CrossRefGoogle Scholar
  53. Zakey A, Solmon F, Giorgi F et al (2006) Implementation and testing of a desert dust module in a regional climate model. Atmos Chem Phys 6(12):4687–4704CrossRefGoogle Scholar
  54. Zakey AS, Giorgi F, Bi X (2008) Modeling of sea salt in a regional climate model: fluxes and radiative forcing. J Geophys Res 113:D14221. doi: 10.1029/2007JD009209 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  1. 1.Earth System Physics SectionThe Abdus Salam International Centre for Theoretical PhysicsTriesteItaly
  2. 2.Informatics InstituteIstanbul Technical UniversityIstanbulTurkey

Personalised recommendations