Climate Dynamics

, Volume 50, Issue 7–8, pp 2285–2310 | Cite as

A simple climatology of westerly jet streams in global reanalysis datasets part 1: mid-latitude upper tropospheric jets

  • Lawrie RikusEmail author


A simple closed contour object identification scheme has been applied to the zonal mean monthly mean zonal wind fields from nine global reanalysis data sets for 31 years of the satellite era (1979–2009) to identify objects corresponding to westerly jet streams. The results cluster naturally into six individual jet streams but only the mid-latitude upper-tropospheric jets are considered here. The time series of the jet properties from all reanalyses are decomposed into seasonal means and anomalies, and correlations between variables are evaluated, with the aim of identifying robust features which can form the basis of evaluation metrics for climate model simulations of the twentieth century. There is substantial agreement between all the reanalyses for all jet properties although there are some systematic differences with particular data sets. Some of the results from the object identification applied to the reanalyses are used in a simple example of a model evaluation score for the zonal mean jet seasonal cycle.


Jet stream climatology Reanalysis data Upper tropospheric jets Object identification Seasonal cycle metric 



Twentieth century Reanalysis V2 data provided by the NOAA/OAR/ESRL PSD, Boulder, Colorado, USA, from their Web site at Support for the Twentieth Century Reanalysis Project dataset is provided by the U.S. Department of Energy, Office of Science Innovative and Novel Computational Impact on Theory and Experiment (DOE INCITE) program, and Office of Biological and Environmental Research (BER), and by the National Oceanic and Atmospheric Administration Climate Program Office.


  1. Archer CL, Caldeira K (2008) Historical trends in the jet streams. Geophys Res Lett 35:1–6. doi: 10.1029/2008GL033614 Google Scholar
  2. Baldwin M, Gray L, Dunkerton T (2001) The quasi-biennial oscillation. Rev Geophys 39:179–229CrossRefGoogle Scholar
  3. Bals-Elsholz T, Atallah E, Bosart LF et al (2001) The wintertime Southern Hemisphere split jet: structure, variability, and evolution. J Clim 14:4191–4215CrossRefGoogle Scholar
  4. Brönnimann S (2007) Impact of El Nino–Southern Oscillation on European climate. Rev Geophys 45:1–28. doi: 10.1029/2006RG000199 CrossRefGoogle Scholar
  5. Brönnimann S, Stickler A, Griesser T et al (2009) Variability of large-scale atmospheric circulation indices for the northern hemisphere during the past 100 years. Meteorol Z 18:379–396. doi: 10.1127/0941-2948/2009/0389 CrossRefGoogle Scholar
  6. Compo GP, Whitaker JS, Sardeshmukh PD et al (2011) The twentieth century reanalysis project. Q J R Meteorol Soc 137:1–28. doi: 10.1002/qj.776 CrossRefGoogle Scholar
  7. Davis SM, Rosenlof KH (2012) A multidiagnostic intercomparison of tropical-width time series using reanalyses and satellite observations. J Clim 25:1061–1078. doi: 10.1175/JCLI-D-11-00127.1 CrossRefGoogle Scholar
  8. Dee DP, Uppala SM, Simmons J et al (2011) The ERA-Interim reanalysis: configuration and performance of the data assimilation system. Q J R Meteorol Soc 137:553–597. doi: 10.1002/qj.828 CrossRefGoogle Scholar
  9. Dzerdzeevskii BL (1945) Tsirkuliatsionnye skhemy v troposfere. Tsentral’noi Arktiki. Izd. Akad. Nauk [English transl. Sci. Rep. No. 3, Contract AF 19 (122)-3228. UCLA]Google Scholar
  10. Eichler T, Higgins W (2006) Climatology and ENSO-related variability of North American extratropical cyclone activity. J Clim 19:2076–2093. doi: 10.1175/JCLI3725.1 CrossRefGoogle Scholar
  11. Frauenfeld OW, Davis RE (2003) Northern Hemisphere circumpolar vortex trends and climate change implications. J Geophys Res 108:4423. doi: 10.1029/2002JD002958 CrossRefGoogle Scholar
  12. Gallego D, Ribera P, Garcia-Herrera R et al (2005) A new look for the Southern Hemisphere jet stream. Clim Dyn 24:607–621. doi: 10.1007/s00382-005-0006-7 CrossRefGoogle Scholar
  13. Grotjahn R (2008) Different data, different general circulations? A comparison of selected fields in NCEP/DOE AMIP-II and ECMWF ERA-40 reanalyses. Dyn Atmos Ocean 44:108–142. doi: 10.1016/j.dynatmoce.2007.08.001 CrossRefGoogle Scholar
  14. Held IM, Suarez MJ (1994) A proposal for the intercomparison of the dynamical cores of atmospheric general circulation models. Bull Am Meteorol Soc 75:1825–1830. doi: 10.1175/1520-0477(1994)075<1825:APFTIO>2.0.CO;2 CrossRefGoogle Scholar
  15. Ho M, Kiem AS, Verdon-Kidd DC (2012) The Southern Annular Mode: a comparison of indices. Hydrol Earth Syst Sci 16:967–982. doi: 10.5194/hess-16-967-2012 CrossRefGoogle Scholar
  16. Jones E, Oliphant E, Peterson P et al (2001) SciPy: Open source scientific tools for Python. Accessed 05 Nov 2014
  17. Kalnay E, Kanamitsu M, Kistler R et al (1996) The NCEP/NCAR 40-year reanalysis project. Bull Am Meteorol Soc 77:437–471CrossRefGoogle Scholar
  18. Kanamitsu M, Ebisuzaki W, Woollen J et al (2002) NCEP–DOE AMIP-II Reanalysis (R-2). Bull Am Meteorol Soc 83:1631–1643. doi: 10.1175/BAMS-83-11-1631 CrossRefGoogle Scholar
  19. Kidston J, Vallis GK (2010) Relationship between eddy-driven jet latitude and width. Geophys Res Lett 37:L21809. doi: 10.1029/2010GL044849 Google Scholar
  20. Kidston J, Vallis GK (2012) The relationship between the speed and the latitude of an eddy-driven jet in a stirred barotropic model. J Atmos Sci 69:3251–3263. doi: 10.1175/JAS-D-11-0300.1 CrossRefGoogle Scholar
  21. Kistler R, Collins W, Saha S et al (2001) The NCEP-NCAR 50-year reanalysis: monthly means CD-ROM and documentation. Bull Am Meteorol Soc 82:247–268CrossRefGoogle Scholar
  22. Kobayashi S, Ota Y, Harada Y et al (2015) The JRA-55 reanalysis: general specifications and basic characteristics. J Meteorol Soc Jpn. doi: 10.2151/jmsj.2015-001 Google Scholar
  23. Koch P, Wernli H, Davies HC (2006) An event-based jet-stream climatology and typology. Int J Climatol 26:283–301. doi: 10.1002/joc.1255 CrossRefGoogle Scholar
  24. Lewis J (2003) Ooishi’s observation: viewed in the context of jet stream discovery. Bull Am Meteorol Soc. doi: 10.1175/BAMS-84-issue Google Scholar
  25. Limbach S, Schömer E, Wernli H (2012) Detection, tracking and event localization of jet stream features in 4-D atmospheric data. Geosci Model Dev 5:457–470. doi: 10.5194/gmd-5-457-2012 CrossRefGoogle Scholar
  26. Lucas C, Nguyen H, Timbal B (2012) An observational analysis of Southern Hemisphere tropical expansion. J Geophys Res Atmos 117:D17112. doi: 10.1029/2011JD017033 CrossRefGoogle Scholar
  27. Manney GL, Hegglin MI, Daffer WH et al (2011) Jet characterization in the upper troposphere/lower stratosphere (UTLS): applications to climatology and transport studies. Atmos Chem Phys 11:1835–1889. doi: 10.5194/acpd-11-1835-2011 CrossRefGoogle Scholar
  28. May W, Bengtsson L (1998) The signature of ENSO in the Northern Hemisphere midlatitude seasonal mean flow and high-frequency intraseasonal variability. Meteorol Atmos Phys 69:81–100. doi: 10.1007/BF01025185 CrossRefGoogle Scholar
  29. Onogi K, Tsutsui J, Koide H et al (2007) The JRA-25 reanalysis. J Meteorol Soc Jpn 85:369–432. doi: 10.2151/jmsj.85.369 CrossRefGoogle Scholar
  30. Paek H, Huang H-P (2012) A comparison of decadal-to-interdecadal variability and trend in reanalysis datasets using atmospheric angular momentum. J Clim 25(13):4750–4758. doi: 10.1175/JCLI-D-11-00358.1 CrossRefGoogle Scholar
  31. Pena-Ortiz C, Gallego D, Ribera P et al (2013) Observed trends in the global jet stream characteristics during the second half of the 20th century. J Geophys Res Atmos 118:2702–2713. doi: 10.1002/jgrd.50305 CrossRefGoogle Scholar
  32. Reed RJ, Kunkel BA (1960) The arctic circulation in summer. J Meteorol 17:489–506. doi: 10.1175/1520-0469(1960)017<0489:TACIS>2.0.CO;2 CrossRefGoogle Scholar
  33. Rienecker MM, Suarez MJ, Gelaro R et al (2011) MERRA: NASA’s modern-era retrospective analysis for research and applications. J Clim 24:3624–3648. doi: 10.1175/JCLI-D-11-00015.1 CrossRefGoogle Scholar
  34. Saha S, Moorthi S, Pan H-L et al (2010) The NCEP climate forecast system reanalysis. Bull Am Meteorol Soc 91:1015–1057. doi: 10.1175/2010BAMS3001.1 CrossRefGoogle Scholar
  35. Santer BD, Wigley TML, Boyle JS et al (2000) Statistical significance of trends and trend differences in layer-average atmospheric temperature time series. J Geophys Res 105:7337. doi: 10.1029/1999JD901105 CrossRefGoogle Scholar
  36. Shapiro MA, Keyser D (1990) Fronts, jet streams, and the tropopause. In: Newton CW, Halopainen EO (eds) Extratropical cyclones: the Erik Palmen Memorial volume. American Meteorological Society, Bostan, MA, pp 167–189 Google Scholar
  37. Strong C, Davis RE (2005) The surface of maximum wind as an alternative to the isobaric surface for wind climatology. Geophys Res Lett 32:L04813. doi: 10.1029/2004GL022039 CrossRefGoogle Scholar
  38. Strong C, Davis RE (2006) Variability in the altitude of fast upper tropospheric winds over the Northern Hemisphere during winter. J Geophys Res 111:D10106. doi: 10.1029/2005JD006497 CrossRefGoogle Scholar
  39. Strong C, Davis R (2007) Winter jet stream trends over the Northern Hemisphere. Q J R Meteorol Soc 2115:2109–2115. doi:10.1002/qjCrossRefGoogle Scholar
  40. Strong C, Davis RE (2008) Variability in the position and strength of winter jet stream cores related to Northern Hemisphere teleconnections. J Clim 21:584–592. doi: 10.1175/2007JCLI1723.1 CrossRefGoogle Scholar
  41. Thompson D, Wallace J (2000) Annular modes in the extratropical circulation. Part I: month-to-month variability. J Clim 13(5):1000–1016CrossRefGoogle Scholar
  42. Uppala SM, KÅllberg PW, Simmons J et al (2005) The ERA-40 re-analysis. Q J R Meteorol Soc 131:2961–3012. doi: 10.1256/qj.04.176 CrossRefGoogle Scholar
  43. Verbesselt J, Hyndman R, Newnham G, Culvenor D (2010) Detecting trend and seasonal changes in satellite image time series. Remote Sens Environ 114:106–115. doi: 10.1016/j.rse.2009.08.014 CrossRefGoogle Scholar
  44. Wilks DS (2011) Statistical methods in the atmospheric sciences. International geophysics series, vol 100, 3rd edn. Academic Press, LondonGoogle Scholar
  45. WMO (1995) Manual on Codes. WMO Publ. 306, Vol. 1.1 World Meteorological Organization, Avenue Giuseppe- Motta 41, CP2300, 1211 Geneva 2, SwitzerlandGoogle Scholar
  46. Woollings T, Hannachi A, Hoskins B (2010) Variability of the North Atlantic eddy-driven jet stream. Q J R Meteorol Soc 136(649):856–868. doi: 10.1002/qj.625 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  1. 1.Centre for Australian Weather and Climate Research, Bureau of MeteorologyMelbourneAustralia

Personalised recommendations