Climate Dynamics

, Volume 49, Issue 3, pp 709–729 | Cite as

Steric sea level variability (1993–2010) in an ensemble of ocean reanalyses and objective analyses

  • Andrea Storto
  • Simona Masina
  • Magdalena Balmaseda
  • Stéphanie Guinehut
  • Yan Xue
  • Tanguy Szekely
  • Ichiro Fukumori
  • Gael Forget
  • You-Soon Chang
  • Simon A. Good
  • Armin Köhl
  • Guillaume Vernieres
  • Nicolas Ferry
  • K. Andrew Peterson
  • David Behringer
  • Masayoshi Ishii
  • Shuhei Masuda
  • Yosuke Fujii
  • Takahiro Toyoda
  • Yonghong Yin
  • Maria Valdivieso
  • Bernard Barnier
  • Tim Boyer
  • Tony Lee
  • Jérome Gourrion
  • Ou Wang
  • Patrick Heimback
  • Anthony Rosati
  • Robin Kovach
  • Fabrice Hernandez
  • Matthew J. Martin
  • Masafumi Kamachi
  • Tsurane Kuragano
  • Kristian Mogensen
  • Oscar Alves
  • Keith Haines
  • Xiaochun Wang
Article

Abstract

Quantifying the effect of the seawater density changes on sea level variability is of crucial importance for climate change studies, as the sea level cumulative rise can be regarded as both an important climate change indicator and a possible danger for human activities in coastal areas. In this work, as part of the Ocean Reanalysis Intercomparison Project, the global and regional steric sea level changes are estimated and compared from an ensemble of 16 ocean reanalyses and 4 objective analyses. These estimates are initially compared with a satellite-derived (altimetry minus gravimetry) dataset for a short period (2003–2010). The ensemble mean exhibits a significant high correlation at both global and regional scale, and the ensemble of ocean reanalyses outperforms that of objective analyses, in particular in the Southern Ocean. The reanalysis ensemble mean thus represents a valuable tool for further analyses, although large uncertainties remain for the inter-annual trends. Within the extended intercomparison period that spans the altimetry era (1993–2010), we find that the ensemble of reanalyses and objective analyses are in good agreement, and both detect a trend of the global steric sea level of 1.0 and 1.1 ± 0.05 mm/year, respectively. However, the spread among the products of the halosteric component trend exceeds the mean trend itself, questioning the reliability of its estimate. This is related to the scarcity of salinity observations before the Argo era. Furthermore, the impact of deep ocean layers is non-negligible on the steric sea level variability (22 and 12 % for the layers below 700 and 1500 m of depth, respectively), although the small deep ocean trends are not significant with respect to the products spread.

Keywords

Ocean reanalysis evaluation Sea level variability  Altimetry Gravimetry 

References

  1. Abraham J et al (2013) A review of global ocean temperature observations: implications for ocean heat content estimates and climate change. Rev Geophys 51:450–483CrossRefGoogle Scholar
  2. Avsic T, Karstensen J, Send U, Fischer J (2006) Interannual variability of newly formed Labrador Sea Water from 1994 to 2005. Geophys Res Lett 33:L21S02CrossRefGoogle Scholar
  3. Balmaseda M et al (2015) The Ocean Reanalyses Intercomparison Project (ORA-IP). J Oper Oceanogr 7:31 (accepted for publication)Google Scholar
  4. Balmaseda MA, Mogensen K, Weaver A (2012) Evaluation of the ECMWF ocean reanalysis system ORAS4. Q J R Meteorol Soc 139:1132–1161CrossRefGoogle Scholar
  5. Behringer D (2007) The global ocean data assimilation system at NCEP. In: 11th symposium on integrated observing and assimilation systems for atmosphere, oceans and land surface. American Meteorology Society Google Scholar
  6. Blockley EW et al (2014) Recent development of the Met Office operational ocean forecasting system: an overview and assessment of the new Global FOAM forecasts. Geosci Model Dev Discuss 6(4):6219–6278. doi:10.5194/gmdd-6-6219-2013 CrossRefGoogle Scholar
  7. Böning C, Dispert A, Visbeck M, Rintoul S, Schwarzkopf F (2008) The response of the Antarctic Circumpolar Current to recent climate change. Nat Geosci 1:864–869CrossRefGoogle Scholar
  8. Cabanes C et al (2013) The CORA dataset: validation and diagnostics of in-situ ocean temperature and salinity measurements. Ocean Sci 9:1–18CrossRefGoogle Scholar
  9. Cazenave A, Llovel W (2010) Contemporary sea level rise. Annu Rev Mar Sci 2:145–173CrossRefGoogle Scholar
  10. Chambers D (2006a) Observing seasonal steric sea level variations with GRACE and satellite altimetry. J Geophys Res 111:C03 010. doi:10.1029/2005JC004836 CrossRefGoogle Scholar
  11. Chambers D, Bonin J (2012) Evaluation of release-05 GRACE time-variable gravity coefficients over the ocean. Ocean Sci 8:859–868CrossRefGoogle Scholar
  12. Chambers D, Schröter B (2011) Measuring ocean mass variability from satellite gravimetry. J Geodyn 52:333–343CrossRefGoogle Scholar
  13. Chambers DP (2006) Evaluation of new GRACE timevariable gravity data over the ocean. Geophys Res Lett 33:LI7603. doi:10.1029/2006GL027296 CrossRefGoogle Scholar
  14. Chang Y, Zhang S, Rosati A, Delworth T, Stern W (2013) An assessment of oceanic variability for 1960–2010 from the GFDL ensemble coupled data assimilation. Clim Dyn 40:775–803CrossRefGoogle Scholar
  15. Chang Y-S, Rosati A, Vecchi GA (2014a) Basin patterns of global sea level changes for 2004–2007. J Mar Syst 80:115–124CrossRefGoogle Scholar
  16. Chang Y-S, Vecchi GA, Rosati A, Zhang S, Yang X (2014b) Comparison of global objective analyzed T-S fields of the upper ocean for 2008–2011. J Mar Syst 137:13–20CrossRefGoogle Scholar
  17. de Boyer Montégut C, Madec G, Fischer AS, Lazar A, Iudicone D (2004) Mixed layer depth over the global ocean: an examination of profile data and a profile-based climatology. J Geophys Res 109:c12003CrossRefGoogle Scholar
  18. Durack P, Wijffels S, Gleckler P (2014) Long-term sea-level change revisited: the role of salinity. Environ Res Lett 9:114017-1–114017-11CrossRefGoogle Scholar
  19. Speer K, Forget G (2013) Global distribution and formation of mode waters. In: Siedler G, Griffies SM, Gould J, Church JA (eds) Ocean circulation and climate: a 21st century perspective. International geophysics. ElsevierGoogle Scholar
  20. Fujii Y, Nakaegawa N, Matsumoto S, Yasuda T, Yamanaka G, Kamachi M (2009) Coupled climate simulation by constraining ocean fields in a coupled model with ocean data. J Clim 22:5541–5557CrossRefGoogle Scholar
  21. Fukumori I (2002) A partitioned Kalman filter and smoother. Mon Weather Rev 130:1370–1383CrossRefGoogle Scholar
  22. Fukumori I, Raghunath R, Fu L, Chao Y (1999) Assimilation of TOPEX/POSEIDON data into a global ocean circulation model: How good are the results? J Geophys Res 104:25 647–25 665CrossRefGoogle Scholar
  23. Fukumori I, Wang O (2013) Origins of heat and freshwater anomalies underlying regional decadal sea level trends. Geophys Res Lett 40:563–567CrossRefGoogle Scholar
  24. Garcia-Garcia D, Chao B, Boy J-P (2010) Steric and mass-induced sea level variations in the Mediterranean Sea revisited. J Geophys Res 115:C12 016. doi:10.1029/2009JC005928 CrossRefGoogle Scholar
  25. Gill A, Niiler PP (1973) The theory of the seasonal variability in the ocean. Deep-Sea Res 20:141–177Google Scholar
  26. Gregory J et al (2013) Twentieth-century global-mean sea level rise: Is the whole greater than the sum of the parts? J Clim 26:4476–4499CrossRefGoogle Scholar
  27. Griffies S, Greatbatch R (2012) Physical processes that impact the evolution of global mean sea level in ocean climate models. Ocean Model 51:37–72CrossRefGoogle Scholar
  28. Griffies S et al (2014) An assessment of global and regional sea level for years 1993–2007 in a suite of interannual CORE-II simulations. Ocean Model 78:35–89CrossRefGoogle Scholar
  29. Guinehut S, Dhomps A, Larnicol G, Le Traon P-Y (2012) High resolution 3D temperature and salinity fields derived from in situ and satellite observations. Ocean Sci 8:845–857CrossRefGoogle Scholar
  30. Haines K, Valdivieso M, Zuo H, Stepanov V (2012) Transports and budgets in a 1/4 global ocean reanalysis 1989–2010. Ocean Sci 8:333–344CrossRefGoogle Scholar
  31. Hanna E et al (2013) Ice-sheet mass balance and climate change. Nature 498:51–59CrossRefGoogle Scholar
  32. Ingleby B, Huddleston M (2007) Quality control of ocean temperature and salinity profiles—historical and real-time data. J Mar Syst 65:158–175CrossRefGoogle Scholar
  33. IPCC (2013) Climate change 2013: The physical science basis. Contribution of working group I to the fifth assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge, UK and New York, NY, USA, 1535 ppGoogle Scholar
  34. Ishii M, Kimoto M, Sakamoto K, Iwasaki S-I (2006) Steric sea level changes estimated from historical ocean subsurface temperature and salinity analyses. J Oceanogr 62:155–170CrossRefGoogle Scholar
  35. Ivchenko V, Danilov S, Sidorenko D, Schröter J, Wenzel M, Aleynik L (2008) Steric height variability in the Northern Atlantic on seasonal and interannual scales. J Geophys Res 113:C11 007. doi:10.1029/2008JC004836 CrossRefGoogle Scholar
  36. Johnson G, Chambers D (2013) Ocean bottom pressure seasonal cycles and decadal trends from GRACE release-05: ocean circulation implications. J Geophys Res 118:4228–4240CrossRefGoogle Scholar
  37. Köhl A (2014) Evaluation of the GECCO2 ocean synthesis: transports of volume, heat and freshwater in the Atlantic. Q J R Meteorol Soc. doi:10.1002/qj.2347
  38. Krishnamurti T, Kishtawal C, Zhang Z, Larow T, Bachiochi D, Williford E (2000) Multimodel ensemble forecasts for weather and seasonal climate. J Clim 13:4196–4216CrossRefGoogle Scholar
  39. Landerer F, Jungclaus J, Marotze J (2007) Regional dynamic and steric sea level change in response to the IPCC-A1B scenario. J Phys Oceanogr 37:296–312CrossRefGoogle Scholar
  40. Le Traon P, Nadal F, Ducet N (1998) An improved mapping method of multi-satellite altimeter data. J Atmos Ocean Technol 15:522–534CrossRefGoogle Scholar
  41. Lee T, Awaji T, Balmaseda M, Grenier E, Stammer D (2009) Ocean state estimation for climate research. Oceanography 22:160–167CrossRefGoogle Scholar
  42. Leuliette E, Miller W (2009) Closing the sea level rise budget with altimetry, Argo, and GRACE. Geophys Res Lett 36:L04 608. doi:10.1029/2008GL036010 CrossRefGoogle Scholar
  43. Leuliette E, Willis J (2011) Balancing the sea level budget. Oceanography 24:122–129CrossRefGoogle Scholar
  44. Levitus S et al (2012) World ocean heat content and thermosteric sea level change (0–2000 m), 1955–2010. Geophys Res Lett 39:L10 603CrossRefGoogle Scholar
  45. Llovel W, Guinehut S, Cazenave A (2010) Regional and interannual variability in sea level over 20022009 based on satellite altimetry, Argo float data and GRACE ocean mass. Ocean Dyn 60:1193–1204CrossRefGoogle Scholar
  46. Lombard A, Garric G, Penduff T (2009) Regional patterns of observed sea level change: insights from a 1/4 global ocean/sea-ice hindcast. Ocean Dyn 59:433–449CrossRefGoogle Scholar
  47. Lombard A et al (2007) Estimation of steric sea level variations from combined GRACE and Jason-1 data. Earth Planet Sci Lett 254:194–202CrossRefGoogle Scholar
  48. Lowe J, Gregory J (2006) Understanding projections of sea level rise in a Hadley Centre coupled climate model. J Geophys Res 111:C11 014CrossRefGoogle Scholar
  49. Masuda S et al (2010) Simulated rapid warming of abyssal North Pacific waters. Science 329:319–322CrossRefGoogle Scholar
  50. Munk W (2003) Ocean freshening, sea level rising. Science 300:2041–2043CrossRefGoogle Scholar
  51. Nerem R, Chambers D, Choe C, Mitchum G (2010) Estimating mean sea level change from the TOPEX and Jason altimeter missions. Mar Geod 33:435–446CrossRefGoogle Scholar
  52. Piecuch C, Ponte R (2011) Mechanisms of interannual steric sea level variability. Geophys Res Lett 38:L15 605CrossRefGoogle Scholar
  53. Piecuch C, Quinn K, Ponte R (2013) Satellite-derived interannual ocean bottom pressure variability and its relation to sea level. Geophys Res Lett 40:3106–3110CrossRefGoogle Scholar
  54. Ponte RM (2006) Oceanic response to surface loading effects neglected in volume-conserving models. J Phys Oceanogr 36:426–434CrossRefGoogle Scholar
  55. Ponte RM (2012) An assessment of deep steric height variability over the global ocean. Geophys Res Lett 39:L04 601. doi:10.1029/2011GL050681 CrossRefGoogle Scholar
  56. Purkey S, Johnson G (2010) Warming of global abyssal and deep Southern Ocean waters between the 1990s and 2000s: contributions to global heat and sea level rise budgets. J Clim 23:6336–6351CrossRefGoogle Scholar
  57. Purkey S, Johnson G (2013) Antarctic bottom water warming and freshening: contributions to sea level rise, ocean freshwater budgets, and global heat gain. J Clim 26:6105–6122CrossRefGoogle Scholar
  58. Quinn KJ, Ponte RM (2010) Uncertainty in ocean mass trends from GRACE. Geophys J Intern 181:762–768. doi:10.1111/j.1365-246X.2010.04508.x Google Scholar
  59. Schott F, Brandt P (2007) Ocean circulation: mechanisms and impacts—past and future changes of meridional overturning, chap. In: Schmittner A, Chiang JCH, Hemming SR (eds) Circulation and deep water export of the subpolar North Atlantic during the 1990’s. American Geophysical Union, Washington, pp 91–118Google Scholar
  60. Stammer D, Cazenave A, Ponte R, Tamisiea M (2013) Causes for contemporary regional sea level changes. Annu Rev Mar Sci 5:21–46CrossRefGoogle Scholar
  61. Stammer D et al (2010) Ocean information provided through ensemble ocean syntheses. In: Hall J, Harrison D, Stammer D (eds) Sustained ocean observations and information for society, OceanObs’09. ESA Publication WPP-306, September 2009, pp 21–25Google Scholar
  62. Steiger J (1980) Tests for comparing elements of a correlation matrix. Psychol Bull 87:245–251CrossRefGoogle Scholar
  63. Storto A, Dobricic S, Masina S, Di Pietro P (2011) Assimilating along-track altimetric observations through local hydrostatic adjustments in a global ocean reanalysis system. Mon Weather Rev 139:738–754CrossRefGoogle Scholar
  64. Storto A, Masina S, Dobricic S (2013) Ensemble spread-based assessment of observation impact: application to a global ocean analysis system. Q J R Meteorol Soc 139:1842–1862CrossRefGoogle Scholar
  65. Storto A, Masina S, Dobricic S (2014) Estimation and impact of nonuniform horizontal correlation length scales for global ocean physical analyses. J Atmos Ocean Technol 31:2330–2349CrossRefGoogle Scholar
  66. Sukuki T, Ishii M (2011) Regional distribution of sea level changes resulting from enhanced greenhouse warming in the Model for Interdisciplinary Research on Climate version 3.2 version. Geophys Res Lett 38:L02 601Google Scholar
  67. Toyoda T, Fujii Y, Yasuda T, Usui N, Iwao T, Kuragano T, Kamachi M (2013) Improved analysis of the seasonal-interannual fields by a global ocean data assimilation system. Theor Appl Mech Jpn 61:31–48Google Scholar
  68. Weaver AT, Deltel C, Machu E, Ricci S, Daget N (2005) A multivariate balance operator for variational ocean data assimilation. Q J R Meteorol Soc 131:605–625CrossRefGoogle Scholar
  69. Willis J, Chambers D, Nerem R (2008) Assessing the globally averaged sea level budget on seasonal to interannual timescales. J Geophys Res 113(C06):015Google Scholar
  70. Wunsch C, Heimbach P (2013) Ocean circulation and climate—a 21st century perspective, international geophysics series. In: Sielder G, Griffes S, Gould J, Church J, Church J (eds) Chapter 21: dynamically and kinematically consistent global ocean circulation and ice state estimates, vol 103. Academic Press, Elsevier, pp 553–579Google Scholar
  71. Xue Y, Huang B, Hu Z, Kumar A, Wen C, Behringer D, Nadiga S (2011) An assessment of oceanic variability in the NCEP climate forecast system reanalysis. Clim Dyn 37:2511–2539CrossRefGoogle Scholar
  72. Yin J, Griffies S, Stouffer R (2010) Spatial variability of sea level rise in twenty-first century projections. J Clim 23:4585–4607CrossRefGoogle Scholar
  73. Yin Y, Alves O, Oke P (2011) An ensemble ocean data assimilation system for seasonal prediction. Mon Weather Rev 139:786–808CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • Andrea Storto
    • 1
  • Simona Masina
    • 1
  • Magdalena Balmaseda
    • 2
  • Stéphanie Guinehut
    • 3
  • Yan Xue
    • 4
  • Tanguy Szekely
    • 5
  • Ichiro Fukumori
    • 6
  • Gael Forget
    • 7
  • You-Soon Chang
    • 8
    • 23
  • Simon A. Good
    • 9
  • Armin Köhl
    • 10
  • Guillaume Vernieres
    • 11
  • Nicolas Ferry
    • 12
  • K. Andrew Peterson
    • 9
  • David Behringer
    • 4
  • Masayoshi Ishii
    • 15
  • Shuhei Masuda
    • 16
  • Yosuke Fujii
    • 15
  • Takahiro Toyoda
    • 15
  • Yonghong Yin
    • 17
  • Maria Valdivieso
    • 18
  • Bernard Barnier
    • 22
  • Tim Boyer
    • 14
  • Tony Lee
    • 6
  • Jérome Gourrion
    • 19
  • Ou Wang
    • 6
    • 20
  • Patrick Heimback
    • 7
  • Anthony Rosati
    • 8
  • Robin Kovach
    • 11
  • Fabrice Hernandez
    • 12
    • 24
  • Matthew J. Martin
    • 13
  • Masafumi Kamachi
    • 15
  • Tsurane Kuragano
    • 15
  • Kristian Mogensen
    • 2
  • Oscar Alves
    • 17
  • Keith Haines
    • 18
  • Xiaochun Wang
    • 21
  1. 1.Centro Euro-Mediterraneo sui Cambiamenti ClimaticiBolognaItaly
  2. 2.European Center for Medium-Range Weather ForecastReadingUK
  3. 3.Collecte Localisation SatellitesRamonville Saint-AgneFrance
  4. 4.National Center for Environmental PredictionsNOAACollege ParkUSA
  5. 5.Institut Universitaire Européen de la MerCNRSBrestFrance
  6. 6.Jet Propulsion LaboratoryCalifornia Institute of TechnologyPasadenaUSA
  7. 7.Massachusetts Institute of TechnologyCambridgeUSA
  8. 8.Geophysical Fluid Dynamics LaboratoryPrincetonUSA
  9. 9.Met Office Hadley CentreExeterUK
  10. 10.Institute of OceanographyUniversity of HamburgHamburgGermany
  11. 11.Global Modeling and Assimilation OfficeNASA Goddard Space Flight CenterGreenbeltUSA
  12. 12.Mercator OcéanRamonville-Saint-AgneFrance
  13. 13.Met OfficeExeterUK
  14. 14.National Oceanographic Data CenterSilver SpringUSA
  15. 15.Meteorological Research InstituteJapan Meteorological AgencyTsukubaJapan
  16. 16.Research and Development Center for Global ChangeJapan Agency for Marine-Earth Science and TechnologyYokohamaJapan
  17. 17.Centre for Australian Weather and Climate ResearchBureau of MeteorologyMelbourneAustralia
  18. 18.Department of MeteorologyUniversity of ReadingReadingUK
  19. 19.Centre national de la recherche scientifiqueCORIOLISBrestFrance
  20. 20.Global Environment and Marine DepartmentJapan Meteorological AgencyTokyoJapan
  21. 21.Joint Institute for Regional Earth System Science and EngineeringUniversity of CaliforniaLos AngelesUSA
  22. 22.Laboratoire des Ecoulements Géophysiques et IndustrielsGrenobleFrance
  23. 23.Department of Earth ScienceKongju National UniversityKongjuSouth Korea
  24. 24.Institut de Recherche pour le Développement (IRD)ToulouseFrance

Personalised recommendations