Advertisement

Climate Dynamics

, Volume 45, Issue 11–12, pp 3461–3480 | Cite as

Two key parameters for the El Niño continuum: zonal wind anomalies and Western Pacific subsurface potential temperature

  • Andy Wang-Chun Lai
  • Michael Herzog
  • Hans-F. Graf
Article

Abstract

Different types of El Niño (EN) events have recently been discussed. Based on NCEP–NOAA reanalysis data this analysis explores a number of key parameters that cause a range of EN types over the period 1980–2013. EN events are divided into three types depending on the spatial and temporal evolution of the sea surface temperature anomalies (SSTA): Central Pacific (CPEN), Eastern Pacific (EPEN), and Hybrid (HBEN). We find that EN is a continuous spectrum of events with CPEN and EPEN as the end members. This spectrum mainly depends on two key parameters: the 130°E–160°E Western Pacific 5–250 m subsurface oceanic potential temperature anomaly about 1 year before the EN peak (typically January and February), and the 140°E–160°W cumulative zonal wind anomaly (ZWA) between onset and peak of the EN event. Using these two parameters, about 70 % of the total variance of the maximum SSTA realised in different Niño regions can already be explained up to 6 months before the maximum SSTA occurs. This offers a rather simple potential for ENSO prediction. A necessary condition for the evolution of an EPEN, the Western Pacific is in the recharged state. Strong and sustained westerly wind anomalies in Western Pacific can then trigger a Kelvin wave propagating to the eastern Pacific. Both parameters, potential temperature and zonal wind anomaly, constructively interfere. For a CPEN, these parameters are much less important. Kelvin wave propagation is not involved in the evolution of the event. Instead, the Central Pacific warming is caused locally by a zonal advection feedback and local air–sea interaction as already demonstrated in previous studies. The HBEN occurs when both parameters interfere in different ways: (1) Western Pacific is weakly charged, but strong westerly ZWA are observed that reduce the equatorial upwelling in the Central Pacific while the triggered Kelvin wave is too weak to have a significant effect; (2) Western Pacific is strongly charged but only weak westerly ZWA develop, so that the resulting Kelvin wave cannot fully extend into the eastern-most Pacific.

Keywords

Central Pacific El Niño El Niño continuum Zonal wind anomalies Oceanic potential temperature Thermocline discharge–recharge state 

References

  1. An S-I, Jin F-F (2001) Collective Role of thermocline and zonal advective feedbacks in the enso mode. J Clim 14:3421–3432CrossRefGoogle Scholar
  2. Ashok K, Behera SK, Rao SA, Weng H, Yamagata T (2007) El Niño Modoki and its possible teleconnection. J Geophys Res 112(C11):C11007. doi: 10.1029/2006JC003798 CrossRefGoogle Scholar
  3. Battisti DS, Hirst AC (1989) Interannual variability in a tropical atmosphere-ocean model: influence of the basic state, ocean geometry and nonlinearity. J Clim 46:1687–1712Google Scholar
  4. Behringer D, Xue Y (2004) Evaluation of the global ocean data assimilation system at NCEP: the Pacific Ocean. Eighth symposium on integrated observing and assimilation systems for atmosphere, oceans, and land surface, AMS 84th annual meeting, Washington State Convention and Trade Center, Seattle, Washington, (January), 11–15Google Scholar
  5. Bergman JW, Hendon HH, Weickmann KM (2001) Intraseasonal air–sea interactions at the onset of El Nino. J Clim 14:1702–1719CrossRefGoogle Scholar
  6. Cai W, Borlace S, Lengaigne M, van Rensch P, Collins M, Vecchi G, Jin FF (2014) Increasing frequency of extreme El Niño events due to greenhouse warming. Nat Clim Change 4(2):111–116. doi: 10.1038/nclimate2100 CrossRefGoogle Scholar
  7. Chen D, Cane MA, Kaplan A, Zebiak SE, Huang D, Cane MA (2004) Predictability of El Niño over the past 148 years. Nature 428(6984):733–736. doi: 10.1038/nature02439 CrossRefGoogle Scholar
  8. Chen S, Chen W, Yu B, Graf H.-F (2013) Modulation of the seasonal footprinting mechanism by the boreal spring Arctic Oscillation. Geophys Res Lett. doi: 10.1002/2013GL058628
  9. Compo GP, Whitaker JS, Sardeshmukh PD, Matsui N, Allan RJ, Yin X, Worley SJ (2011) The twentieth century reanalysis project. Q J R Meteorol Soc 137(654):1–28. doi: 10.1002/qj.776 CrossRefGoogle Scholar
  10. England MH, Mcgregor S, Spence P, Meehl GA, Timmermann A, Cai W, Santoso A (2014) Recent intensification of wind-driven circulation in the Pacific and the Ongoing Warming Hiatus. Nat Clim Change. doi: 10.1038/NCLIMATE2106
  11. Fedorov AV (2002) The response of the coupled tropical ocean-atmosphere to westerly wind bursts. Q J R Meteorol Soc 128:1–23CrossRefGoogle Scholar
  12. Fedorov AV, Hu S, Lengaigne M, Guilyardi E (2014) The impact of westerly wind bursts and ocean initial state on the development, and diversity of El Niño events. Clim Dyn. doi: 10.1007/s00382-014-2126-4
  13. Giese BS, Ray S (2011) El Niño variability in simple ocean data assimilation (SODA), 1871–2008. J Geophys Res 116(C2):C02024. doi: 10.1029/2010JC006695 Google Scholar
  14. Graf H-F (1986) El-Nino southern oscillation and northern hemispheric temperature. Gerlands Beitr Geophysik 1:63–75Google Scholar
  15. Graf H-F, Zanchettin D (2012) Central Pacific El Niño, the “subtropical bridge”, and Eurasian climate. J Geophys Res 117(D1):D01102. doi: 10.1029/2011JD016493 Google Scholar
  16. Grose MR, Brown JN, Narsey S, Brown JR, Murphy BF, Langlais C, Irving DB (2014) Assessment of the CMIP5 global climate model simulations of the western tropical Pacific climate system and comparison to CMIP3. Int J Climatol 34:3382–3399. doi: 10.1002/joc.3916 CrossRefGoogle Scholar
  17. Guilyardi E (2006) El Niño–mean state–seasonal cycle interactions in a multi-model ensemble. Clim Dyn 26(4):329–348. doi: 10.1007/s00382-005-0084-6 CrossRefGoogle Scholar
  18. Guilyardi E, Wittenberg A, Fedorov A, Collins M, Wang C, Capotondi A, Van Oldenborgh GJ, Stockdale T (2009) Understanding El Niño in ocean-atmosphere general circulation models: progress and challenges. Bull Amer Meteor 90(3):325–340. doi: 10.1175/2008BAMS2387.1 CrossRefGoogle Scholar
  19. Hong C-C, Wu Y-K, Li T, Chang C-C (2013) The climate regime shift over the Pacific during 1996/1997. Clim Dyn 43(1–2):435–446. doi: 10.1007/s00382-013-1867-9 Google Scholar
  20. Hu S, Fedorov AV, Lengaigne M, Guilyardi E (2014) The impact of westerly wind bursts on the diversity and predictability of El Niño events: an ocean energetics perspective. Geophys Res Lett 41:4654–4663. doi: 10.1002/2013GL058954.Received Google Scholar
  21. Jin F-F (1997) An equatorial ocean recharge paradigm for ENSO. Part I: conceptual model. J Atmos Sci 54:811–829CrossRefGoogle Scholar
  22. Jin F, An S (1999) Within the equatorial ocean recharge oscillator model for ENSO. Geophys Res Lett 26(19):2989–2992CrossRefGoogle Scholar
  23. Johnson NC (2013) How many ENSO flavors can we distinguish? J Clim 26(13):4816–4827. doi: 10.1175/JCLI-D-12-00649.1 CrossRefGoogle Scholar
  24. Kao H-Y, Yu J-Y (2009) Contrasting eastern-pacific and central-pacific types of ENSO. J Clim 22(3):615–632. doi: 10.1175/2008JCLI2309.1 CrossRefGoogle Scholar
  25. Kessler WS (2002) Is ENSO a cycle or a series of events? Geophys Res Lett 29(23):2125. doi: 10.1029/2002GL015924 CrossRefGoogle Scholar
  26. Kim ST, Yu J.-Y (2012) The two types of ENSO in CMIP5 models. Geophys Res Lett 39(11). doi: 10.1029/2012GL052006
  27. Kug J-S, Jin F-F, An S-I (2009) Two types of El Niño events: cold tongue El Niño and warm pool El Niño. J Clim 22(6):1499–1515. doi: 10.1175/2008JCLI2624.1 CrossRefGoogle Scholar
  28. Lian T, Chen D (2012) An evaluation of rotated EOF analysis and its application to tropical pacific SST variability. J Clim 25(15):5361–5373. doi: 10.1175/JCLI-D-11-00663.1 CrossRefGoogle Scholar
  29. Mcgregor S, Timmermann A, Stuecker MF, England MH, Merrifield M (2014) Recent Walker circulation strengthening and Pacific cooling amplified by Atlantic warming. Nat Clim Change 4. doi: 10.1038/NCLIMATE2330
  30. McPhaden MJ, Zebiak SE, Glantz MH (2006) ENSO as an integrating concept in earth science. Science (New York, NY) 314(5806):1740–1745. doi: 10.1126/science.1132588 CrossRefGoogle Scholar
  31. Meinen CS, McPhaden MJ (2000) Observations of warm water volume changes in the equatorial pacific and their relationship to El Nino and La Nina. J Clim 13:3551–3559. doi: 10.1175/1520-0442(2000)013<3551:OOWWVC>2.0.CO;2 CrossRefGoogle Scholar
  32. Pascolini-Campbell M, Zanchettin D, Bothe O, Timmreck C, Matei D, Jungclaus JH, Graf H-F (2014) Toward a record of Central Pacific El Niño events since 1880. Theor Appl Climatol. doi: 10.1007/s00704-014-1114-2 Google Scholar
  33. Rao SA, Dhakate AR, Saha SK, Mahapatra S, Chaudhari HS, Pokhrel S, Sahu SK (2011) Why is Indian Ocean warming consistently? Clim Change 110(3–4):709–719. doi: 10.1007/s10584-011-0121-x Google Scholar
  34. Reynolds RW, Rayner NA, Smith TM, Stokes DC, Wang W (2002) An improved in situ and satellite SST analysis for climate. J Clim 15:1609–1625CrossRefGoogle Scholar
  35. Santoso A, McGregor S, Jin F-F, Cai W, England MH, An S-I, Guilyardi E (2013) Late-twentieth-century emergence of the El Niño propagation asymmetry and future projections. Nature 504:126. doi: 10.1038/nature12683 CrossRefGoogle Scholar
  36. Schneider EK, Huang B, Shukla J (1995) Ocean wave dynamics and El Nino. J Clim 8:2415–2439CrossRefGoogle Scholar
  37. Suarez MJ, Schopf PS (1988) A delayed action oscillator for ENSO. J Atmos Sci 45:3283–3287CrossRefGoogle Scholar
  38. Takahashi K, Montecinos A, Goubanova K, Dewitte B (2011) ENSO regimes: reinterpreting the canonical and Modoki El Nio. Geophys Res Lett 38(May):1–5. doi: 10.1029/2011GL047364 Google Scholar
  39. Vecchi GA, Soden BJ, Wittenberg AT, Held IM, Leetmaa A, Harrison MJ (2006) Weakening of tropical Pacific atmospheric circulation due to anthropogenic forcing. Nature 441(7089):73–76. doi: 10.1038/nature04744 CrossRefGoogle Scholar
  40. Vimont DJ, Wallace JM, Battisti DS (2003) The seasonal footprinting mechanism in the Pacific: implications for ENSO. J Clim 16:2668–2675CrossRefGoogle Scholar
  41. Yeh S-W, Kug J-S, Dewitte B, Kwon M-H, Kirtman BP, Jin F-F (2009) El Niño in a changing climate. Nature 461(7263):511–514. doi: 10.1038/nature08316 CrossRefGoogle Scholar
  42. Yeh S-W, Kug J-S, An S-I (2014) Recent progress on two types of El Niño: observations, dynamics, and future changes. Asia Pac J Atmos Sci 50(1):69–81. doi: 10.1007/s13143-014-0028-3 CrossRefGoogle Scholar
  43. Yu J-Y, Kim ST (2010) Three evolution patterns of Central-Pacific El Niño. Geophys Res Lett 37(8). doi: 10.1029/2010GL042810

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • Andy Wang-Chun Lai
    • 1
  • Michael Herzog
    • 1
  • Hans-F. Graf
    • 1
  1. 1.Centre for Atmospheric ScienceUniversity of CambridgeCambridgeUK

Personalised recommendations