Climate Dynamics

, Volume 45, Issue 11–12, pp 3331–3345 | Cite as

Role of vertical structure of cloud microphysical properties on cloud radiative forcing over the Asian monsoon region

  • V. Ravi Kiran
  • M. Rajeevan
  • H. Gadhavi
  • S. Vijaya Bhaskara Rao
  • A. Jayaraman
Article

Abstract

Five years (2006–2010) of clouds and earth’s radiant energy system (CERES) and CloudSat data have been analyzed to examine the role of vertical structure of cloud microphysical properties on cloud radiative forcing (CRF) parameters at the top-of-the atmosphere over the Asian monsoon region during the summer monsoon season (June–September) and the Pacific warm pool region during April. Vertical profile of cloud properties (optical depth, cloud liquid water content and cloud ice water content) derived from CloudSat data has been used for the present analysis. Shortwave, longwave and net CRF derived from the CERES data have been used. The results suggest an imbalance between shortwave cloud radiative forcing and longwave cloud radiative forcing over the Asian monsoon region consistent with the results reported earlier. The present analysis suggests that over the Bay-of-Bengal (BoB), vertical profile of cloud microphysical properties determine more than 50 % of variance in CRF. However, over the Pacific warm pool region, cloud microphysical property profiles does not contribute significantly to variance in net CRF (<10 %). Over the BoB, large asymmetry between shortwave and longwave CRF is caused by large amounts of cloud liquid water content in the layer between the surface and 9 km. The present study highlights the importance of accurate representation of cloud microphysical properties in determining the influence of clouds on the radiative balance over the top-of-the atmosphere.

Keywords

Cloud radiative forcing Cloud microphysics Radiative budget Cloud vertical structure Indian summer monsoon Pacific warm pool region 

Notes

Acknowledgments

We would like to express our gratitude to the NASA CloudSat project and CloudSat data processing center (CDPC) for providing huge CloudSat dataset on disks in response to our data order. Thanks are also to NASA Langley science directorate and the staff of all CERES teams responsible for production and free distribution of the CERES data sets used in the study. We thank director NARL for providing necessary facilities to carry out the research activity. Also the authors are grateful to both the reviewers for their positive and constructive comments, which helped us to improve the quality of the paper.

Supplementary material

382_2015_2542_MOESM1_ESM.docx (591 kb)
Supplementary material 1 (DOCX 591 kb)

References

  1. Allan RP, Slingo A, Ringer MA (2002) Influence of dynamics on the changes in tropical cloud radiative forcing during the 1998 El Nino. J Clim 15(14):1979–1986CrossRefGoogle Scholar
  2. Austin RT, Stephens GL (2001) Retrieval of stratus cloud microphysical parameters using millimeter-wave radar and visible optical depth in preparation for CloudSat 1. Algorithm formulation. J Geophys Res 106:28233–28242CrossRefGoogle Scholar
  3. Balachandran and Rajeevan (2007) Sensitivity of surface radiation budget to clouds over the Asian monsoon region. J Earth Syst Sci 116:159–169. doi: 10.1007/s12040-007-0016-4 CrossRefGoogle Scholar
  4. Cess RD, Zhang M, Wielicki BA, Young DF, Zhou X-L, Nikitenko Y (2001) The influence of the 1998 El Nino upon cloud-radiative forcing over the pacific warm pool. J Clim 14(9):2129–2137CrossRefGoogle Scholar
  5. Das SK, Uma KN, Konwar M, Ernest Raj P, Deshpande SM, Kalapureddy MCR (2013) CloudSat-CALISPO characterizations of cloud during the active and break periods of Indian summer monsoon. J Atmos Sol Terr Phys 97:106–114CrossRefGoogle Scholar
  6. Doelling DR et al (2013) Geostationary Enhanced Temporal Interpolation for CERES flux products. J Atmos Ocean Technol 30:1072–1090. doi: 10.1175/JTECH-D-12-00136.1 CrossRefGoogle Scholar
  7. Eilers Paul HC, Goeman Jelle J (2004) Enhancing scatterplots with smoothed densities. Bioinformatics 20:623–628CrossRefGoogle Scholar
  8. Haladay T, Stephens G (2009) Characteristics of tropical thin cirrus clouds deduced from joint CloudSat and CALIPSO observations. J Geophys Res 114:D00A25. doi: 10.1029/2008JD010675 Google Scholar
  9. Harrison EF, Barkstrom BR, Ramanathan V, Cess RD, Gibson GG (1990) Seasonal variation of cloud radiative forcing derived from the earth radiation budget experiment. J Geophys Res 95:18687–18703CrossRefGoogle Scholar
  10. Hartman DL, Moy LA, Fu Q (2001) Torpical convection and the energy balance at the top of the atmosphere. J Clim 14:4495–4511CrossRefGoogle Scholar
  11. Haynes JM, Stephens GL (2007) Tropical oceanic cloudiness and the incidence of precipitation: early results from CloudSat. Geophys Res Lett 34:L09811. doi: 10.1029/2007GL029335 Google Scholar
  12. Kau WS, Wu CH, Tsou CH (2003) The cloud radiative forcing over Asian-Pacific summer monsoon region. Terr Atmos Ocean Sci 14:445–467Google Scholar
  13. Kiehl JT (1994) On the observed near cancellation between longwave and shortwave cloud forcing in tropical regions. J Clim 7:559–565CrossRefGoogle Scholar
  14. Kiehl JT, Ramanathan V (1990) Comparison of cloud forcing derived from the earth radiation budget experiment with that simulated by the NCAR community climate model. J Geophys Res 95:11679–11698CrossRefGoogle Scholar
  15. Meenu S, Rajeev K, Parameswaran K, Nair AKM (2010) Regional distribution of deep clouds and cloud top altitudes over the Indian subcontinent and the surrounding oceans. J Geophys Res 115:D05205. doi: 10.1029/2009JD011802 Google Scholar
  16. Nair AKM, Rajeev K (2014) Multiyear CloudSat and CALIPSO observations of the dependence of cloud vertical distribution on sea surface temperature and tropospheric dynamics. J Clim 27:672–683. doi: 10.1175/JCLI-D-13-00062.1 CrossRefGoogle Scholar
  17. Nair AKM, Rajeev K, Sijikumar S, Meenu S (2011) Characteristics of a persistent “Pool of inhibited cloudiness” and its genesis over the Bay of Bengal associated with the Asian summer monsoon. Ann Geophys 29:1247–1252. doi: 10.5194/angeo-29-1247-2011 CrossRefGoogle Scholar
  18. Norm Wood (2008) Level 2B radar-visible optical depth cloud water content (2B-CWC-RVOD) process description document. http://www.cloudsat.cira.colostate.edu/dataSpecs.php?prodid=76. Last modified 23 October 2008
  19. Pai DS, Rajeevan M (1998) Clouds and cloud radiative forcing over tropical Indian Ocean and their relationship with sea surface temperature. Curr Sci 75:373–381Google Scholar
  20. Patil SD, Yadav RK (2005) Large-scale changes in the cloud radiative forcing over the Indian region. Atmos Environ 39:4609–4618CrossRefGoogle Scholar
  21. Priestley KJ et al (2011) Radiometric performance of the CERES earth radiation budget climate record sensors on the eos aqua and terra spacecraft through April 2007. J Atmos Ocean Technol 28:3–21CrossRefGoogle Scholar
  22. Rajeevan M, Srinivasan J (2000) Net cloud radiative forcing at the top of the atmosphere in the Asian monsoon region. J Clim 13:650–657CrossRefGoogle Scholar
  23. Rajeevan M, Rohini P, Niranjan Kumar K, Srinivasan J, Unnikrishnan CK (2012) A study of vertical cloud structure of the Indian summer monsoon using CloudSat data. Clim Dyn. doi: 10.1007/s00382-012-1374-4 Google Scholar
  24. Ramanathan V, Cess RD, Harrison EF, Minnis P, Barkstrom BR, Ahmad E, Hartmann D (1989) Cloud-radiative forcing and climate: results from the earth radiation budget experiment. Science 243:57–63CrossRefGoogle Scholar
  25. Randall DA, Harshvardham DA, Dazlich DA, Corsetti TG (1989) Interactions among radiation, convection, and largescale dynamics in a general circulation model. J Atmos Sci 46:1943–1970CrossRefGoogle Scholar
  26. Roca R, Louvet S, Picon L, Desbois M (2004) A study of convective systems, water vapor and top of the atmosphere cloud radiative forcing over the Indian Ocean using INSAT-1B and ERBE data. Meteorol Atmos Phys. doi: 10.1007/s00703-004-0098-3 Google Scholar
  27. Samala BK, Krishnan R (2007) Cloud-radiative impacts on the tropical Indian Ocean associated with the evolution of ‘monsoon breaks’. Int J Climatol 28:205–217. doi: 10.1002/joc.1518 CrossRefGoogle Scholar
  28. Sassen K, Khvorostyanov VI (2007) Microphysical and radiative properties of mixed phase altocumulus: a model evaluation of glaciation effects. Atmos Res 84:390–398. doi: 10.1016/j.atmosres.2005.08.017 CrossRefGoogle Scholar
  29. Sassen K, Wang Z (2008) Classifying clouds around the globe with the CloudSat radar: 1-year of results. Geophys Res Lett 35:L04805. doi: 10.1029/2007GL032591 Google Scholar
  30. Sassen K, Wang Z, Liu D (2009) Cirrus clouds and deep convectin in the tropics: insights from CALIPSO and CloudSat. J Geophys Res 114:D00H06. doi: 10.1029/2009JD011916 Google Scholar
  31. Sathiyamoorthy V, Pal PK, Joshi PC (2004) Influence of the upper-tropospheric wind shear upon cloud radiative forcing in the Asian monsoon region. J Clim 17:2725–2735CrossRefGoogle Scholar
  32. Sathiyamoorthy V, Mahesh C, Gopalan Kaushik, Prkash Satya, Shukla Bipasha P, Mathur AK (2013) Characteristics of low clouds over the Arabian Sea. J Geophys Res Atmos 118:13489–13503. doi: 10.1002/2013JD020553 CrossRefGoogle Scholar
  33. Sindhu KD, Bhatt GS (2013) Comparision of CloudSat and TRMM radar reflectivities. J Earth Syst Sci 4:947–956CrossRefGoogle Scholar
  34. Slingo A, Slingo JM (1988) The response of a general circulation model to cloud longwave radiative forcing, 1. Introduction and initial experiment. Q J R Meteorol Soc 112:1027–1062CrossRefGoogle Scholar
  35. Smith GL, Bruce A, Wielicki Bruce R, Barkstrom Robert B, Lee Kory J, Priestley Thomas P, Charlock Patrick Minnis, Kratz David P, Loeb Norman, Young David F (2004) Clouds and Earth radiant energy system: an overview. Adv Space Res 33:1125–1131. doi: 10.1016/S0273-1177(03)00739-7 CrossRefGoogle Scholar
  36. Solomon S, Qin D, Manning M, Chen Z, Marquis M, Averyt KB, Tignor M, Miller HL (eds) (2007) Contributions of working group I to the fourth assessment report of intergovernmental panel on climate change, chapter 8. Cambridge University Press, Cambridge, UK, New York, USA, p 996Google Scholar
  37. Stephens GL (2005) Cloud feedbacks in the climate system: a critical review. J Clim 18:237–273. doi: 10.1175/JCLI-3243.1 CrossRefGoogle Scholar
  38. Stephens GL et al (2002) The cloudsat mission and the A-Train. Bull Am Meteorol Soc 83:1771–1790CrossRefGoogle Scholar
  39. Stephens GL, Vane Deborah G et al (2008) CloudSat mission: performance and early science after the first year of operation. J Geophys Res 113:D00A18. doi: 10.1029/2008JD009982 Google Scholar
  40. Su H, Jiang JH, Stephens GL, Vane DG, Livesey NJ (2009) Radiative effects of upper tropospheric clouds observed by Aura MLS and CloudSat. Geophys Res Lett 36:L09815. doi: 10.1029/2009GL037173 Google Scholar
  41. Subrahmanyam KV, Kumar KK (2013) CloudSat observations of cloud-type distribution over the Indian summer monsoon region. Ann Geophys 31:1155–1162. doi: 10.5194/angeo-31-1155-2013 CrossRefGoogle Scholar
  42. Thampi BV, Roca R (2014) Investigation of negative cloud radiative forcing over the Indian subcontinent and adjacent oceans during the summer monsoon season. Atmos Chem Phys 14:6739–6758. doi: 10.5194/acp-14-6739-2014 CrossRefGoogle Scholar
  43. Wang WC, Kau WS, Hsu HH, Tu CH (2004) Characteristics of cloud radiative forcing over East Asia. J Clim 17:845–853CrossRefGoogle Scholar
  44. Webster PJ, Magana VO, Palmer TN, Shukla J, Tomas RA, Yanai M, Yasunari T (1998) Monsoons: processes, predictability, and the prospects for prediction. J Geophys Res 103:14451–14510CrossRefGoogle Scholar
  45. Wielicki BA et al (1996) Clouds and the Earths radiant energy system (CERES): an earth observing system experiment. Bull Am Meteorol Soc 77:853–868CrossRefGoogle Scholar
  46. Wielicki BA et al (2002) Evidence for large decadal variability in the tropical mean radiative energy budget. Science 295:841. doi: 10.1126/science.1065837 CrossRefGoogle Scholar
  47. Zhang C (1993) Large-scale variability of Atmospheric deep convection in relation to Sea surface temperature in the tropics. J Clim 6:1898–1913CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • V. Ravi Kiran
    • 1
  • M. Rajeevan
    • 2
  • H. Gadhavi
    • 1
  • S. Vijaya Bhaskara Rao
    • 3
  • A. Jayaraman
    • 1
  1. 1.National Atmospheric Research Laboratory, Department of SpaceGadankiIndia
  2. 2.Earth System Science Organization (ESSO), Ministry of Earth Sciences (MoES)New DelhiIndia
  3. 3.Department of PhysicsSri Venkateswara UniversityTirupatiIndia

Personalised recommendations