Advertisement

Climate Dynamics

, Volume 45, Issue 9–10, pp 2949–2961 | Cite as

On the response of Indian summer monsoon to aerosol forcing in CMIP5 model simulations

Article

Abstract

The Indo-Gangetic plains (IGP), which hosts 1/7th of the world population, has undergone significant anomalous changes in hydrological cycle in recent decades. In present study, the role of aerosols in the precipitation changes over IGP region is investigated using Coupled Model Inter-comparison Project-5 (CMIP5) experiments with adequate representation of aerosols in state-of-the art climate models. The climatological sea surface temperature experiments are used to explore the relative impact of the aerosols. The diagnostic analysis on representation of aerosols and precipitation over Indian region was investigated in CMIP5 models. After the evaluation, multi-model ensemble was used for further analysis. It is revealed from the analysis that aerosol-forcing plays an important role in observed weakening of the monsoon circulation and decreased precipitation over the IGP region. The significant cooling of the continental Indian region (mainly IGP) caused by the aerosols leads to reduction in land sea temperature contrast, which further leads to weakening of monsoon overturning circulation and reduction in precipitation.

Keywords

Aerosol monsoon interactions CMIP-5 experiment IGP rainfall Aerosol effects 

Notes

Acknowledgments

The Indian Institute of Tropical Meteorology (IITM) is supported by the Ministry of Earth Sciences, Govt. of India, New Delhi. The authors thank Prof. B.N. Goswami, Former Director, IITM and Dr. R. Krishnan, Executive Director of CCCR for the encouragement and support to carry out the present work. SDS is thankful to Mr. Ramarao and Miss Priya for scientific discussions. SDS is also thankful to Dr. Anoop Mahajan for training in Mendeley software which helped to arrange references systematically. The datasets from MODIS, MISR, ERA-40 and GPCP are acknowledged with thanks. We acknowledge the World Climate Research Programme’s Working Group on Coupled Modeling, which is responsible for CMIP. We thank the climate modeling groups for producing and making available their model output.

Supplementary material

382_2015_2516_MOESM1_ESM.doc (282 kb)
Supplementary material 1 (DOC 281 kb)

References

  1. Albrecht BA (1989) Fractional cloudiness. Science 245(80):1227–1230CrossRefGoogle Scholar
  2. Andrews T (2013) Using an AGCM to diagnose historical effective radiative forcing and mechanisms of recent decadal climate change. J Clim. doi: 10.1175/JCLI-D-13-00336.1 Google Scholar
  3. Bellouin N, Collins WJ, Culverwell ID et al (2011) The HadGEM2 family of Met Office Unified Model climate configurations. Geosci Model Dev 4:723–757. doi: 10.5194/gmd-4-723-2011 CrossRefGoogle Scholar
  4. Bollasina M, Ramaswamy V, Ming Y (2011) Anthropogenic aerosols and the weakening of the South Asian summer monsoon. Science 334(80):502–505. doi: 10.1126/science.1204994 CrossRefGoogle Scholar
  5. Cherian R, Venkataraman C, Quaas J, Ramachandran S (2013) GCM simulations of anthropogenic aerosol-induced changes in aerosol extinction, atmospheric heating and precipitation over India. J Geophys Res Atmos 118:2938–2955. doi: 10.1002/jgrd.50298 CrossRefGoogle Scholar
  6. Chung CE, Ramanathan V (2006) Weakening of North Indian SST gradients and the monsoon rainfall in India and the Sahel. J Clim 19:2036–2045CrossRefGoogle Scholar
  7. Donner LJ, Wyman BL, Hemler RS et al (2011) The dynamical core, physical parameterizations, and basic simulation characteristics of the atmospheric component AM3 of the GFDL Global Coupled Model CM3. J Clim 24:3484–3519. doi: 10.1175/2011JCLI3955.1 CrossRefGoogle Scholar
  8. Dufresne J-L, Foujols M-A, Denvil S et al (2013) Climate change projections using the IPSL-CM5 Earth System Model: from CMIP3 to CMIP5. Clim Dyn 40:2123–2165. doi: 10.1007/s00382-012-1636-1 CrossRefGoogle Scholar
  9. Ganguly D, Rasch PJ, Wang H, Yoon J (2012a) Fast and slow responses of the South Asian monsoon system to anthropogenic aerosols. Geophys Res Lett. doi: 10.1029/2012GL053043
  10. Ganguly D, Rasch PJ, Wang H, Yoon J-H (2012b) Climate response of the South Asian monsoon system to anthropogenic aerosols. J Geophys Res 117:D13209. doi: 10.1029/2012JD017508 CrossRefGoogle Scholar
  11. Garg A, Shukla PR, Bhattacharya S, Dadhwal VK (2001) Sub-region (district) and sector level SO and NO emissions for India: assessment of inventories and mitigation flexibility. Atmos Environ 35:703–713CrossRefGoogle Scholar
  12. Goswami BN, Venugopal V, Sengupta D et al (2006) Increasing trend of extreme rain events over India in a warming environment. Science 314(80):1442–1445CrossRefGoogle Scholar
  13. Guhathakurta P, Sreejith OP, Menon PA (2011) Impact of climate change on extreme rainfall events and flood risk in India. J Earth Syst Sci 120:359–373. doi: 10.1007/s12040-011-0082-5 CrossRefGoogle Scholar
  14. Hansen J, Sato M, Ruedy R (1997) Radiative forcing and climate response abstract. We examine the sensitivity of a climate model to a wide range of radiative including changes of solar forcing introduced times the climate response, specifically the global mean temperature change, is se. J Geophys Res Atmos 102:6831–6864CrossRefGoogle Scholar
  15. Hansen J, Sato M, Ruedy R et al (2005) Efficacy of climate forcings. J Geophys Res. doi: 10.1029/2005JD005776 Google Scholar
  16. Huffman GJ, Adler RF, Arkin P, et al (1997) The Global Precipitation Climatology Project (GPCP) combined precipitation dataset. Bull Am Meteorol Soc 78:5–20CrossRefGoogle Scholar
  17. Jha S, Sehgal VK, Raghava R, Sinha M (2013) Trend of standardized precipitation index during Indian summer monsoon season in agroclimatic zones of India. Earth Syst Dyn Discuss 4:429–449. doi: 10.5194/esdd-4-429-2013 CrossRefGoogle Scholar
  18. Joseph PV, Simon A (2005) Weakening trend of the southwest monsoon current through peninsular India from 1950 to the present. Curre 89:687–694Google Scholar
  19. Kaufman YJ, Tanré D, Boucher O (2002) In the climate system. Nature 419:215–223CrossRefGoogle Scholar
  20. Kirkevåg A, Iversen T, Seland Ø et al (2013) Aerosol–climate interactions in the Norwegian Earth System Model—NorESM1-M. Geosci Model Dev 6:207–244. doi: 10.5194/gmd-6-207-2013 CrossRefGoogle Scholar
  21. Kothawale DR, Kumar KK, Srinivasan G (2012) Spatial asymmetry of temperature trends over India and possible role of aerosols. Theor Appl Climatol 110:263–280. doi: 10.1007/s00704-012-0628-8 CrossRefGoogle Scholar
  22. Krishnan R, Ramanathan V (2002) Evidence of surface cooling from absorbing aerosols. Geophys Res Lett 29:2–5CrossRefGoogle Scholar
  23. Krishnan R, Sabin TP, Ayantika DC, et al (2013) Will the South Asian monsoon overturning circulation stabilize any further ? doi: 10.1007/s00382-012-1317-0
  24. Lau K-M, Kim K-M (2006) Observational relationships between aerosol and Asian monsoon rainfall, and circulation. Geophys Res Lett 33:L21810. doi: 10.1029/2006GL027546 CrossRefGoogle Scholar
  25. Li H, Zhaou TLC (2010) Decreasing trend in global land monsoon precipitation over the past 50 years simulated by a coupled climate model. Adv Atmos Sci 27:285–292. doi: 10.1007/s00376-009-8173-9.1.Introduction CrossRefGoogle Scholar
  26. Manoj MG, Devara PCS, Safai PD, Goswami BN (2010) Absorbing aerosols facilitate transition of Indian monsoon breaks to active spells. Clim Dyn 37:2181–2198. doi: 10.1007/s00382-010-0971-3 CrossRefGoogle Scholar
  27. Martins J, Tanré D, Remer L (2002) MODIS cloud screening for remote sensing of aerosols over oceans using spatial variability. Geophys Res 29:3–6Google Scholar
  28. Meehl G, Arblaster J, Collins W (2008) Effects of black carbon aerosols on the Indian monsoon. J Clim. doi: 10.1175/2007JCLI1777.1 Google Scholar
  29. Menon S, Hansen J, Nazarenko L, Luo Y (2002) Climate effects of black carbon aerosols in China and India. Science 297:2250–2253. doi: 10.1126/science.1075159 CrossRefGoogle Scholar
  30. Nigam S, Zhao Y, Ruiz-Barradas A, Zhou T (2013) The south-flood north-drought pattern over the Eastern China and the drying of the Gangetic plains: observations, simulations and origin. In: Ghil M, Latif M, Wallace M, Chang CP (eds) Climate change: multidecadal and beyond. World pressGoogle Scholar
  31. Platnick S, King MD, Ackerman SA, Menzel WP, Baum BA, Riedi JC, Frey RA (2003) The MODIS cloud products: algorithms and examples from Terra. IEEE Trans Geosci Remote Sens 41(2):459–473CrossRefGoogle Scholar
  32. Rajeevan M, Bhate J, Jaswal AK (2008) Analysis of variability and trends of extreme rainfall events over India using 104 years of gridded daily rainfall data. 35:1–6. doi:10.1029/2008GL035143Google Scholar
  33. Ramachandran S, Cherian R (2008) Regional and seasonal variations in aerosol optical characteristics and their frequency distributions over India during 2001–2005. J Geophys Res 113:D08207. doi: 10.1029/2007JD008560 Google Scholar
  34. Ramanathan V, Carmichael G (2008) Global and regional climate changes due to black carbon. Nature 1:221–227Google Scholar
  35. Ramanathan V, Crutzen PJ, Kiehl JT, Rosenfeld D (2001) Aerosols, climate, and the hydrological cycle. Science 294:2119–2124. doi: 10.1126/science.1064034 CrossRefGoogle Scholar
  36. Ramanathan V, Chung C, Kim D et al (2005) Atmospheric brown clouds: impacts on South Asian climate and hydrological cycle. Proc Natl Acad Sci USA 102:5326–5333. doi: 10.1073/pnas.0500656102 CrossRefGoogle Scholar
  37. Ramanathan V, Li F, Ramana MV et al (2007) Atmospheric brown clouds: hemispherical and regional variations in long-range transport, absorption, and radiative forcing. J Geophys Res 112:D22S21. doi: 10.1029/2006JD008124 Google Scholar
  38. Rao BRS, Bhaskar Rao DV, Rao VB (2004) Decreasing trend in the strength of tropical easterly jet during the Asian summer monsoon season and the number of tropical cyclonic systems over Bay of Bengal. Geophys Res Lett 31:L14103. doi: 10.1029/2004GL019817 CrossRefGoogle Scholar
  39. Remer LA, Mattoo S, Levy RC et al (2012) Retrieving aerosol in a cloudy environment: aerosol product availability as a function of spatial resolution. Atmos Meas Tech 5:1823–1840. doi: 10.5194/amt-5-1823-2012 CrossRefGoogle Scholar
  40. Rotstayn LD, Jeffrey SJ, Collier MA et al (2012) Aerosol- and greenhouse gas-induced changes in summer rainfall and circulation in the Australasian region: a study using single-forcing climate simulations. Atmos Chem Phys 12:6377–6404. doi: 10.5194/acp-12-6377-2012 CrossRefGoogle Scholar
  41. Sajani S, Moorthy KK, Rajendran K, Nanjundiah RS (2012) Monsoon sensitivity to aerosol direct radiative forcing. J Earth Syst Sci 121:867–889CrossRefGoogle Scholar
  42. Sanap SD, Pandithurai G (2014) Inter-annual variability of aerosols and its relationship with regional climate over Indian subcontinent. Int J Climatol. doi:  10.1002/joc.4037
  43. Sanap SD, Ayantika DC, Pandithurai G, Niranjan K (2014) Assessment of the aerosol distribution over Indian subcontinent in CMIP5 models. Atmos Environ 87:1–15. doi: 10.1016/j.atmosenv.2014.01.017 CrossRefGoogle Scholar
  44. Srinivasan J, Gadgil S (2002) Asian brown cloud—fact and fantasy. Curr Sci 83:586–592Google Scholar
  45. Srivastava HN, Dewan BN, Dikshit SK, Rao P, Singh GS, Rao KR (1992) Decadal trends in climate over India. Mausam 43:7–20Google Scholar
  46. Taylor KE (2001) Summerizing multiple aspects of model performance in a single diagram. J Geophys Res 106:7183–7192CrossRefGoogle Scholar
  47. Taylor KE, Stouffer RJ, Meehl GA (2012) An overview of CMIP5 and the experiment design. Bull Am Meteorol Soc 93:485–498. doi: 10.1175/BAMS-D-11-00094.1 CrossRefGoogle Scholar
  48. Twomey S (1977) The influence of pollution on the shortwave albedo of clouds. J Atmos Sci 34:1149–1152CrossRefGoogle Scholar
  49. Uppala SM, KÅllberg PW, Simmons AJ et al (2005) The ERA-40 re-analysis. Q J R Meteorol Soc 131:2961–3012. doi: 10.1256/qj.04.176 CrossRefGoogle Scholar
  50. Vinoj V, Rasch PJ, Wang H, et al (2014) Short-term modulation of Indian summer monsoon rainfall by West Asian dust. Nat Geosci. doi: 10.1038/NGEO2107
  51. Watanabe M, Suzuki T, O’ishi R et al (2010) Improved climate simulation by MIROC5: mean states, variability, and climate sensitivity. J Clim 23:6312–6335. doi: 10.1175/2010JCLI3679.1 CrossRefGoogle Scholar
  52. Yukimoto S, Adachi Y, Hosaka M et al (2012) A new global climate model of the Meteorological Research Institute: MRI-CGCM3; model description and basic performance. J Meteorol Soc Japan 90A:23–64. doi: 10.2151/jmsj.2012-A02 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  1. 1.Indian Institute of Tropical MeteorologyPuneIndia
  2. 2.CMNS Earth System Science Interdisciplinary CentreUniversity of MarylandCollege ParkUSA

Personalised recommendations