Climate Dynamics

, Volume 45, Issue 9–10, pp 2861–2884 | Cite as

Moisture sources to the 2010–2012 anomalous wet season in northern South America

  • Paola A. Arias
  • J. Alejandro Martínez
  • Sara C. Vieira


During 2010–2012, northern South America experienced one of the strongest wet seasons during the recent decades, with socio-economic implications of wide proportions. This period was characterized by two stronger-than-average La Niña events, one occurred in 2010–2011 and another less intense event in 2011–2012. This study focused on identifying the main moisture sources, besides the eastern Pacific, for the anomalous wet season occurred in this region during 2010–2012, and their association with the La Niña events observed in the equatorial Pacific. The results discussed here suggest that the main moisture sources to this anomalous wet season were the Pacific Ocean (via the westerly flow of the Choco jet) and the Caribbean Sea (via the weakening of the Caribbean low-level jet and the development of southward anomalies toward northern South America). Such changes appear to be associated not only to El Niño-Southern Oscillation (ENSO)-driven sea surface temperature anomalies in the eastern Pacific, Caribbean Sea, and north Atlantic, but also to ENSO-independent variability in the Atlantic Ocean. The latter is related to an enhanced Atlantic Meridional Mode.


La Niña 2010–2011 La Niña 2011–2012 Choco low-level jet Caribbean low-level jet Northern South America climate Moisture transport 



The main idea for this work was conceived during “the 2013 Pan American Advanced Studies Institute (PASI)—Atmospheric Processes of Latin America and the Caribbean: Observations, Analysis, and Impacts”, held in Cartagena, Colombia, in May 2013. We thank the Constellation Observing System for Meteorology, Ionosphere, and Climate (COSMIC) Program for the scholarships granted to the three authors, which allowed their assistance to this course. We specially thank John Braun, Shuyi Chen, Ana María Durán-Quesada, Olga Mayol-Bracero, Carolina Vera, Tom Yoksas, and all the lectures in this course. The authors also sincerely thank Francina Domínguez, from the Department of Atmospheric Sciences of the University of Arizona, who gently allow us to implement the DRM in this study. We also thank Empresas Públicas de Medellín and IDEAM for providing the rain gauge data used in this study. We acknowledge the insightful suggestions from two anonymous reviewers and the editor, which improved this manuscript. Finally, we acknowledge Julio Cañón for his help acquiring rain gauge data. Paola Arias and Sara Vieira were funded by Colciencias Program #5509-543-31966 and the program “Estrategia de Sostenibilidad 2014-2015” at Universidad de Antioquia, Colombia. J. Alejandro Martinez was funded by NSF award 1045260.


  1. Adler RF, Huffman GJ, Chang A, Ferraro R, Xie P, Janowiak J, Rudolf B, Schneider U, Curtis S, Bolvin D, Gruber A, Suskind J, Arkin P (2003) The version 2 Global Precipitation Climatology Project (GPCP) monthly precipitation analysis (1979-present). J Hydrometeorol 4:1147–1167CrossRefGoogle Scholar
  2. Amador JA (1998) A climatic feature of the tropical Americas: the trade wind easterly jet. Top Meteor Oceanogr 5(2):1–13Google Scholar
  3. Amador JA (2008) The Intra-Americas Sea low-level jet: overview and future research. Ann N Y Acad Sci 1146:153–188. doi: 10.1196/annals.1446.012 CrossRefGoogle Scholar
  4. Amador JA, Alfaro EJ, Lizano OG, Magaña VO (2006) Atmospheric forcing of the eastern tropical Pacific: a review. Prog Oceanogr 69:101–142CrossRefGoogle Scholar
  5. Arias PA, Fu R, Vera CS, Rojas M (2014) A correlated shortening of the North and South American monsoon seasons in the past few decades. Clim Dyn (under review)Google Scholar
  6. Australian Bureau of Meteorology (2012) Record-breaking La Niña events: An analysis of the La Niña life cycle and the impacts and significance of the 2010–11 and 2011–12 La Niña events in Australia. Bureau of Meteorology, MelbourneGoogle Scholar
  7. Chiang JCH, Kushnir Y, Giannini A (2002) Deconstructing Atlantic Intertropical Convergence Zone variability: influence of the local cross-equatorial sea surface temperature gradient, and remote forcing from the eastern equatorial Pacific. J Geophys Res 107(D1):4004. doi: 10.1029/2000JD000307 CrossRefGoogle Scholar
  8. Dee DP et al (2011) The ERA-Interim reanalysis: configuration and performance of the data assimilation system. Q J R Meteorol Soc 137:553–597. doi: 10.1002/qj.828 CrossRefGoogle Scholar
  9. Dominguez F, Kumar P, Liang X, Ting M (2006) Impact of atmospheric moisture storage on precipitation recycling. J Clim 19:1513–1530CrossRefGoogle Scholar
  10. Eslava J (1993) Some climatic particularities of Colombia’s Pacific region (in Spanish). Atmósfera 17:45–63Google Scholar
  11. Espinoza JC, Ronchail J, Guyot JL, Junquas C, Vauchel P, Lavado W, Drapeau G, Pombosa R (2011) Climate variability and extreme drought in the upper Solimões River (western Amazon Basin): understanding the exceptional 2010 drought. Geophys Res Lett 38:L13406. doi: 10.1029/2011GL047862 CrossRefGoogle Scholar
  12. Garreaud R (2000) Cold air incursions over subtropical South America: mean structure and dynamics. Mon Wea Rev 128(7):2544–2559CrossRefGoogle Scholar
  13. Goessling HF, Reick CH (2013) On the “well-mixed” assumption and numerical 2-D tracking of atmospheric moisture. Atmos Chem Phys 13:5567–5585. doi: 10.5194/acp-13-5567-2013 CrossRefGoogle Scholar
  14. Grossmann I, Klotzbach PJ (2009) A review of North Atlantic modes of natural variability and their driving mechanisms. J Geophys Res 114:D24107. doi: 10.1029/2009JD012728 CrossRefGoogle Scholar
  15. Hastenrath S (1999) Equatorial mid-tropospheric easterly jet over the eastern Pacific. J Meteorol Soc Jpn 77:701–709Google Scholar
  16. Hastenrath S (2002) The intertropical convergence zone of the eastern Pacific revisited. Int J Climatol 22:347–356CrossRefGoogle Scholar
  17. Hoyos I, Baquero-Bernal A, Jacob D, Rodríguez BA (2013a) Variability of extreme events in the Colombian Pacific and Caribbean catchment basins. Clim Dyn 40:1985–2003CrossRefGoogle Scholar
  18. Hoyos N, Escobar J, Restrepo JC, Arango AM, Ortiz JC (2013b) Impact of the 2010–2011 La Niña phenomenon in Colombia, South America: the human toll of an extreme weather event. App Geograph 39:16–25CrossRefGoogle Scholar
  19. Huang B, Schopg PS, Shukla J (2004) Intrinsic Ocean-Atmosphere variability of the tropical Atlantic Ocean. J Clim 17:2058–2077CrossRefGoogle Scholar
  20. Huffman GJ, Adler RF, Bolvin DT, Gu G, Nelkin EJ, Bowman KP, Hong Y, Stocker EF, Wolff DB (2007) The TRMM multi-satellite precipitation analysis: quasi-global, multi-year, combined-sensor precipitation estimates at fine scale. J Hydrometeor 8:38–55CrossRefGoogle Scholar
  21. IDEAM (2005) Atlas Climatológico de Colombia. IDEAM, BogotaGoogle Scholar
  22. Kalnay E, Kanamitsu M, Kistler R, Collins W, Deaven D, Gandin L, Iredell M, Saha S, White G, Woollen J, Zhu Y, Chelliah M, Ebisuzaki W, Higgins W, Janowiak J, Mo K, Ropelewski C, Wang J, Leetma A, Reynolds R, Jenne R, Joseph D (1996) The NCEP-NCAR 40-year reanalysis project. Bull Am Meteor Soc 77:437–471CrossRefGoogle Scholar
  23. Keenlyside NS, Latif M (2007) Understanding equatorial Atlantic inter-annual variability. J Climate 20:131–142CrossRefGoogle Scholar
  24. Marengo JA, Cornejo A, Satyamurty P, Nobre C, Sea W (1994) Cold surges in tropical and extratropical South America: the strong event in June 1994. Mon Wea Rev 125(11):2759–2786CrossRefGoogle Scholar
  25. Marengo JA, Tomasella J, Alves LM, Soares WR, Rodriguez DA (2011) The drought of 2010 in the context of historical droughts in the Amazon region. Geophys Res Lett 38:L12703. doi: 10.1029/2011GL047436 CrossRefGoogle Scholar
  26. Martinez JA, Dominguez F (2014) Sources of Atmospheric Moisture for the La Plata River Basin. J Clim 27:6737–6753CrossRefGoogle Scholar
  27. Martínez R, Euscátegui C, Jaimes E, León G, Quintero A (2011) [Regional climates] Northern South America and the tropical Andes. [In. State of the climate in 2010]. Bull Am Meteorol Soc 92(6):S186–S187Google Scholar
  28. Martínez R, Arévalo J, Carrasco G, Jaimes E, León G (2012) [Regional Climates]. Northern South America and the tropical Andes. [In. State of the climate in 2011]. Bull Am Meteorol Soc 93(7):S174–S175Google Scholar
  29. Martínez R, Arévalo J, Carrasco G, Euscategui C, Jaimes E, Nieto J (2013) [Regional climates] Northern South America and the tropical Andes. [In. State of the climate in 2012]. Bull Am Meteorol Soc 94(8):S158–S159Google Scholar
  30. Poveda G, Mesa OJ (1997) Feedbacks between hydrological processes in tropical South America and large-scale Ocean–Atmospheric Phenomena. J Clim 10:2690–2702CrossRefGoogle Scholar
  31. Poveda G, Mesa OJ (1999) The low level westerly jet (Choco jet) and two other jets in Colombia: climatology and variability during ENSO phases (in Spanish). Revista Academia Colombiana de Ciencias 23(89):517–528Google Scholar
  32. Poveda G, Mesa OJ (2000) On the existence of Lloró (the rainiest locality on Earth): enhanced ocean–atmosphere–land interaction by a low level jet. Geophys Res Lett 27:1675–1678CrossRefGoogle Scholar
  33. Poveda G, Mesa OJ, Salazar LF, Arias PA, Moreno HA, Vieira SC, Agudelo P, Toro VG, Alvarez JF (2005) Diurnal cycle of precipitation in the tropical Andes of Colombia. Mon Wea Rev 133(1):228–240CrossRefGoogle Scholar
  34. Poveda G, Waylen PR, Pulwarty RS (2006) Annual and inter-annual variability of the present climate in northern South America and southern Mesoamerica. Palaeogeo Palaeoclimatol Palaeoecol 234:3–27CrossRefGoogle Scholar
  35. Poveda G, Álvarez DM, Rueda OA (2011) Hydro-climatic variability over the Andes of Colombia associated with ENSO: a review of climatic processes and their impact on one of the Earth’s most important biodiversity hotspots. Clim Dyn 36:2233–2249CrossRefGoogle Scholar
  36. Poveda G, Jaramillo L, Vallejo LF (2014) Seasonal precipitation patterns along pathways of South American low-level jets and aerial rivers. Wat Res Res 50:98–118CrossRefGoogle Scholar
  37. Randel DL, Vonder Haar TH, Ringerud MA, Stephens GL, Greenwald TJ, Combs CL (1996) A new global water vapor dataset. Bull Americ Meteorol Soc 77(6):1233–1246CrossRefGoogle Scholar
  38. Reynolds RW (1988) A real-time global sea surface temperature analysis. J Clim 1:75–86CrossRefGoogle Scholar
  39. Richter I, Behera SK, Masumoto Y, Taguchi B, Sasaki H, Yamagata T (2013) Equatorial Atlantic warm events that do not rely on ENSO-like air-sea coupling. Nature Geosci 6:43–46Google Scholar
  40. Sakamoto MS, Ambrizi T, Poveda G (2011) Moisture sources and life cycle of convective systems western Colombia. Adv Meteorol 2011:1–11. doi: 10.1155/2011/890759 CrossRefGoogle Scholar
  41. Sierra JP, Arias PA, Vieira SC (2015) Precipitation over northern South America and its seasonal variability as simulated by the CMIP5 models. Adv Meteorol. doi: 10.1155/2015/634720 Google Scholar
  42. Snow JW (1976) The climate of northern South America. In: Scwerdtfeger W (eds) Climates of Central and South America, World Survey of Climatology, vol 12. Elsevier Scientific Publishing Co, Amsterdam, pp 295–403Google Scholar
  43. Torrealba ER, Amador JA (2010) La corriente en chorro de bajo nivel sobre los Llanos Venezolanos de Sur América. Revista de Climatología 10:1–10Google Scholar
  44. Trenberth KE, Fasullo JT (2012) Climate extremes and climate change: the Russian heat wave and other climate extremes of 2010. J Geophys Res 117:D17103. doi: 10.1029/2012JD018020 Google Scholar
  45. Trenberth KE, Fasullo JT, Mackaro J (2011) Atmospheric Moisture Transports from Ocean to Land and Global Energy Flows in Reanalyses. J Clim 24:4907–4924CrossRefGoogle Scholar
  46. Van der Ent RJ, Tuinenburg OA, Knoche HR, Kunstmann H, Savenije HHG (2013) Should we use a simple or complex model for moisture recycling and atmospheric moisture tracking? Hydrol Earth Syst Sci 17:4869–4884. doi: 10.5194/hess-17-4869-2013 CrossRefGoogle Scholar
  47. Vimont DJ, Kossin JP (2007) The Atlantic Meridional Mode and hurricane activity. Geophys Res Lett 34:L07709. doi: 10.1029/2007GL029683 CrossRefGoogle Scholar
  48. Vonder Haar TH, Bytheway JL, Forsythe JM (2012) Weather and climate analyses using improved global water vapor observations. Geophys Res Lett 39:L15802. doi: 10.1029/2012GL052094 CrossRefGoogle Scholar
  49. Wallace JM, Gutzler DS (1981) Teleconnections in the geopotential height field during the Northern Hemisphere winter. Mon Wea Rev 109:784–812CrossRefGoogle Scholar
  50. Wang C (2005) ENSO, Atlantic climate variability, and the Walker and Hadley circulations. In: Diaz HF, Bradley RS (eds) The hadley circulation: present, past, and future. Kluwer Academic Publishers, Berlin, pp 173–202Google Scholar
  51. Wang C (2007) Variability of the Caribbean low-level jet and its relations to climate. Clim Dyn 29:411–422CrossRefGoogle Scholar
  52. Wang C, Enfield DB (2001) The tropical Western Hemisphere warm pool. Geophys Res Lett 28:1635–1638CrossRefGoogle Scholar
  53. Wang C, Enfield DB (2003) A further study of the tropical Western Hemisphere warm pool. J Clim 16:1476–1493CrossRefGoogle Scholar
  54. Wang H, Fu R (2002) Cross-equatorial flow and seasonal cycle of precipitation over South America. J Clim 15:1591–1608CrossRefGoogle Scholar
  55. Wang C, Lee SK, Enfield DB (2007) Impact of the Atlantic warm pool on the summer climate of the Western Hemisphere. J Clim 20:5021–5040CrossRefGoogle Scholar
  56. Xie S-P, Carton JA (2004) Tropical Atlantic variability: patterns, mechanisms, and impacts. Earth climate: the Ocean–Atmosphere interaction. Geophys Monogr 147:121–142Google Scholar
  57. Xie S-P, Okumura Y, Miyama T, Timmermann A (2008) Influences of Atlantic climate change on the tropical Pacific via the Central American Isthmus. J Clim 21:3914–3928CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • Paola A. Arias
    • 1
  • J. Alejandro Martínez
    • 2
  • Sara C. Vieira
    • 1
  1. 1.Grupo de Ingeniería y Gestión Ambiental (GIGA), Escuela Ambiental, Facultad de IngenieríaUniversidad de AntioquiaMedellínColombia
  2. 2.Department of Atmospheric SciencesUniversity of ArizonaTucsonUSA

Personalised recommendations