Advertisement

Climate Dynamics

, Volume 45, Issue 1–2, pp 139–150 | Cite as

Higher Laurentide and Greenland ice sheets strengthen the North Atlantic ocean circulation

  • Xun GongEmail author
  • Xiangdong Zhang
  • Gerrit Lohmann
  • Wei Wei
  • Xu Zhang
  • Madlene Pfeiffer
Article

Abstract

During the last glacial–interglacial cycle, changes in the large-scale North Atlantic ocean circulation occurred, and at the same time topography of the Laurentide and Greenland ice sheets also varied. In this study, we focus on detecting the changes of the North Atlantic gyres, western boundary current, and the Atlantic meridional overturning circulation (AMOC) corresponding to different Laurentide and Greenland ice sheet topographies. Using an Earth System Model, we conducted simulations for five climate states with different ice sheet topographies: Pre-industrial, Mid Holocene, Last Glacial Maximum, 32 kilo years before present and Eemian interglacial. Our simulation results indicate that higher topographies of the Laurentide and Greenland ice sheets strengthen surface wind stress curl over the North Atlantic ocean, intensifying the subtropical and subpolar gyres and the western boundary currents. The corresponding decrease in sea surface height from subtropical to subpolar favors a stronger AMOC. An offshore shift of the Gulf Stream is also identified during the glacial periods relative to that during the Pre-industrial due to lower sea levels, explaining a weaker glacial Gulf Stream detected in proxy data. Meanwhile, the North Atlantic gyres and AMOC demonstrate a positively correlated relation under each of the climate conditions with higher ice sheets.

Keywords

North Atlantic gyres Western boundary current Atlantic meridional overturning circulation Ice sheet Glacial climate states 

Notes

Acknowledgments

The authors thank their colleagues from the Paleo-climate Dynamics Group of Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research for continuing support and discussion. Especially, we thank the colleagues Dr. Paola Moffa Sanchez and Dr. Lukas Jonkers in the School of Earth and Ocean Sciences, Cardiff University, for several effective discussions. The study presented by this paper was initiated when X.G. visited the International Arctic Research Center (IARC), University of Alaska Fairbanks, in 2011 under the support of German Helmholtz POLMAR Project and Japan Agency for Marine-Earth Science and Technology through IARC.

Supplementary material

382_2015_2502_MOESM1_ESM.doc (30 kb)
Supplementary material 1 (DOC 30 kb)
382_2015_2502_MOESM2_ESM.png (984 kb)
Supplementary material 2 (PNG 983 kb)
382_2015_2502_MOESM3_ESM.eps (30 kb)
Supplementary material 3 (EPS 30 kb)
382_2015_2502_MOESM4_ESM.tif (7.3 mb)
Supplementary material 4 (TIFF 7433 kb)
382_2015_2502_MOESM5_ESM.gif (2.3 mb)
Supplementary material 5 (GIF 2391 kb)
382_2015_2502_MOESM6_ESM.gif (2.8 mb)
Supplementary material 6 (GIF 2865 kb)
382_2015_2502_MOESM7_ESM.tif (1.7 mb)
Supplementary material 7 (TIFF 1769 kb)
382_2015_2502_MOESM8_ESM.tif (313 kb)
Supplementary material 8 (TIFF 312 kb)
382_2015_2502_MOESM9_ESM.doc (38 kb)
Supplementary material 9 (DOC 37 kb)

References

  1. Backeberg BC, Penven P, Rouault M (2012) Impact of intensified Indian Ocean winds on mesoscale variability in the Agulhas system. Nat Clim Change 2:608–612CrossRefGoogle Scholar
  2. Berger AL (1978) Long-term variations of daily insolation and quaternary climatic changes. J Atmos Sci 35:2362–2367CrossRefGoogle Scholar
  3. Bouttes N, Paillard D, Roche DM, Brovkin V, Bopp L (2011) Last Glacial Maximum CO2 and δ13C successfully reconciled. Geophys Res Lett 38:L02705Google Scholar
  4. Brook EJ, Harder S, Severinghaus J, Steig EJ, Sucher CM (2000) On the origin and timing of rapid changes in atmospheric methane during the last glacial period. Global Biogeochem Cycles 14:559–572CrossRefGoogle Scholar
  5. Bryden HL, Longworth HR, Cunningham SA (2005) Slowing of the Atlantic meridional overturning circulation at 25 degrees N. Nature 438:655–657CrossRefGoogle Scholar
  6. Burkholder KC, Lozier MS (2011) Subtropical to subpolar pathways in the North Atlantic: deductions from Lagrangian trajectories. J Geophys Res Oceans 116:C07017Google Scholar
  7. Byrkjedal O, Kvamsto N, Meland M, Jansen E (2006) Sensitivity of last glacial maximum climate to sea ice conditions in the Nordic Seas. Clim Dyn 26:473–487CrossRefGoogle Scholar
  8. Clark PU, Dyke AS, Shakun JD, Carlson AE, Clark J, Wohlfarth B, Mitrovica JX, Hosteler SW, McCabe AM (2009) The last glacial maximum. Science 325:710–714CrossRefGoogle Scholar
  9. CLIMAP Project Members (CLIMAP) (1981) Seasonal reconstructions of the Earth’s surface at the Last Glacial Maximum. Map Chart Ser. MC-36. Geological Society of America, BoulderGoogle Scholar
  10. Crucifix M, Braconnot P, Harrison SP, Otto-Bliesner B (2005) Second phase of paleoclimate modelling intercomparison project. EOS Trans AGU 86(28):264. doi: 10.1029/2005EO280003 CrossRefGoogle Scholar
  11. Curry RG, McCartney MS (2001) Ocean gyre circulation changes associated with the North Atlantic Oscillation. J Phys Oceanogr 31:3374–3400CrossRefGoogle Scholar
  12. Curry WB, Oppo DW (2005) Glacial water mass geometry and the distribution of delta C-13 of Sigma CO2 in the western Atlantic Ocean. Paleoceanography 20:1017CrossRefGoogle Scholar
  13. de Vernal A, Hillaire-Marcel C, Peltier WR, Weaver AJ (2002) Structure of the upper water column in the northwest North Atlantic: modern versus Last Glacial Maximum conditions. Paleoceanography 17:PA1050Google Scholar
  14. Duplessy JC, Shackleton NJ, Fairbanks RG, Labeyrie L, Oppo D, Kallel N (1988) Deepwater source variations during the last climatic cycle and their impact on the global deepwater circulation. Paleoceanography 3:343–360CrossRefGoogle Scholar
  15. Dzhiganshin GF, Polonsky AB (2009) Low-frequency variations of the Gulf-Stream transport: description and mechanisms. Phys Oceanogr 19:151–169CrossRefGoogle Scholar
  16. Ganopolski A, Rahmstorf S (2001) Rapid changes of glacial climate simulated in a coupled climate model. Nature 409:153–158CrossRefGoogle Scholar
  17. Gong X, Knorr G, Lohmann G, Zhang X (2013) Dependence of abrupt Atlantic meridional ocean circulation changes on climate background states. Geophys Res Lett 40:3698–3704. doi: 10.1002/grl.50701 CrossRefGoogle Scholar
  18. Hagemann S, Dümenil L (1998) A parametrization of the lateral waterflow for the global scale. Clim Dynam 14:17–31CrossRefGoogle Scholar
  19. Hesse T, Butzin M, Bickert T, Lohmann G (2011) A model-data comparison of delta C-13 in the glacial Atlantic Ocean. Paleoceanography. doi: 10.1029/2010PA002085 Google Scholar
  20. Hofmann M, Rahmstorf S (2009) On the stability of the Atlantic meridional overturning circulation. Proc Natl Acad Sci USA 106:20584–20589CrossRefGoogle Scholar
  21. Hogg NG (1992) On the transport of the Gulf-Stream between Cape-Hatteras and the Grand-Banks. Deep Sea Res Part A Oceanogr Res Pap 39:1231–1246CrossRefGoogle Scholar
  22. Hogg NG, Johns WE (1995) Western boundary currents. U.S. National Report to Internatonal Union of Geodesy and Geophysics 1991–1994. Suppl Rev Geophys 33:1311–1334CrossRefGoogle Scholar
  23. Indermühle A, Stocker TF, Joos F, Fischer H, Smith HJ, Wahlen M, Deck B, Mastroianni D, Tschumi J, Blunier T, Meyer R, Stauffer B (1999) Holocene carbon-cycle dynamics based on CO2 trapped in ice at Taylor Dome, Antarctica. Nature 398:121–126CrossRefGoogle Scholar
  24. Justino F, Peltier WR (2008) Climate anomalies induced by the arctic and antarctic oscillations: glacial maximum and present-day perspectives. J Clim 21:459–475CrossRefGoogle Scholar
  25. Keigwin LD, Curry WB, Lehman SJ, Johnsen S (1994) The role of the deep-ocean in North-Atlantic climate-change between 70-Kyr and 130-Kyr Ago. Nature 371:323–326CrossRefGoogle Scholar
  26. Levitus S (1982) Climatological atlas of the world ocean. NOAA/ERL GFDL Professional Paper 13, PrincetonGoogle Scholar
  27. Lohmann G, Lorenz S (2000) On the hydrological cycle under paleoclimatic conditions as derived from AGCM simulations. J Geophys Res Atmos 105:17417–17436CrossRefGoogle Scholar
  28. Lunt DJ, Abe-Ouchi A, Bakker P, Berger A, Braconnot P, Charbit S, Fischer N, Herold N, Jungclaus JH, Khon VC, Krebs-Kanzow U, Langebroek PM, Lohmann G, Nisancioglu KH, Otto-Bliesner BL, Park W, Pfeiffer M, Phipps SJ, Prange M, Rachmayani R, Renssen H, Rosenbloom N, Schneider B, Stone EJ, Takahashi K, Wei W, Yin Q, Zhang ZS (2013) A multi-model assessment of last interglacial temperatures. Clim Past 9:699–717CrossRefGoogle Scholar
  29. Lynch-Stieglitz J, Curry WB, Slowey N (1999) Weaker Gulf Stream in the Florida straits during the last glacial maximum. Nature 402:644–648CrossRefGoogle Scholar
  30. Lynch-Stieglitz J, Adkins JF, Curry WB, Dokken T, Hall IR, Herguera JC, Hirschi JJM, Ivanova EV, Kissel C, Marchal O, Marchitto TM, McCave IN, McManus JF, Mulitza S, Ninnemann U, Peeters F, Yu EF, Zahn R (2007) Atlantic meridional overturning circulation during the Last Glacial Maximum. Science 316:66–69CrossRefGoogle Scholar
  31. Lynch-Stieglitz J, Curry WB, Lund DC (2009) Florida Straits density structure and transport over the last 8000 years. Paleoceanography. doi: 10.1029/2008PA001717 Google Scholar
  32. Manabe S, Stouffer RJ (1995) Simulation of abrupt climate-change induced by fresh-water input to the North-Atlantic Ocean. Nature 378:165–167CrossRefGoogle Scholar
  33. Marchal O, Curry WB (2008) On the abyssal circulation in the glacial Atlantic. J Phys Oceanogr 38:2014–2037CrossRefGoogle Scholar
  34. Marsland SJ, Haak H, Jungclaus JH, Latif M, Roske F (2003) The Max-Planck-Institute global ocean/sea ice model with orthogonal curvilinear coordinates. Ocean Model 5:91–127CrossRefGoogle Scholar
  35. Martrat B, Grimalt JO, Shackleton NJ, de Abreu L, Hutterli MA, Stocker TF (2007) Four climate cycles of recurring deep and surface water destabilizations on the Iberian margin. Science 317:502–507CrossRefGoogle Scholar
  36. McManus JF, Francois R, Gherardi JM, Keigwin LD, Brown-Leger S (2004) Collapse and rapid resumption of Atlantic meridional circulation linked to deglacial climate changes. Nature 428:834–837CrossRefGoogle Scholar
  37. Montoya M, Levermann A (2008) Surface wind-stress threshold for glacial Atlantic overturning. Geophys Res Lett. doi: 10.1029/2007GL032560 Google Scholar
  38. Montoya M, Born A, Levermann A (2011) Reversed North Atlantic gyre dynamics in present and glacial climates. Clim Dyn 36:1107–1118CrossRefGoogle Scholar
  39. Munk WH (1950) On the wind-driven ocean circulation. Journal of Meteorology 7:79–93CrossRefGoogle Scholar
  40. Oka A, Hasumi H, Abe-Ouchi A (2012) The thermal threshold of the Atlantic meridional overturning circulation and its control by wind stress forcing during glacial climate. Geophys Res Lett. doi: 10.1029/2012GL051421 Google Scholar
  41. Otto-Bliesner BL, Hewitt CD, Marchitto TM, Brady E, Abe-Ouchi A, Crucifix M, Murakami S, Weber SL (2007) Last Glacial Maximum ocean thermohaline circulation: PMIP2 model intercomparisons and data constraints. Geophys Res Lett. doi: 10.1029/2007GL029475 Google Scholar
  42. Overpeck JT, Otto-Bliesner BL, Miller GH, Muhs DR, Alley RB, Kiehl JT (2006) Paleoclimatic evidence for future ice-sheet instability and rapid sea-level rise. Science 311:1747–1750CrossRefGoogle Scholar
  43. Pausata FSR, Li C, Wettstein JJ, Nisancioglu KH, Battisti DS (2009) Changes in atmospheric variability in a glacial climate and the impacts on proxy data: a model intercomparison. Clim Past 5:489–502CrossRefGoogle Scholar
  44. Pausata FSR, Li C, Wettstein JJ, Kageyama M, Nisancioglu KH (2011) The key role of topography in altering North Atlantic atmospheric circulation during the last glacial period. Clim Past 7:1089–1101CrossRefGoogle Scholar
  45. Peltier WR (2004) Global glacial isostasy and the surface of the ice-age earth: the ice-5G (VM2) model and grace. Annu Rev Earth Planet Sci 32:111–149CrossRefGoogle Scholar
  46. Peltier WR (2007) History of earth rotation. Treatise Geophys 9:243–293CrossRefGoogle Scholar
  47. Pfeiffer M, Lohmann G (2013) the last interglacial as simulated by an atmosphere-ocean general circulation model: sensitivity studies on the influence of the Greenland ice sheet. In: Lohmann G, Grosfeld K, Wolf-Gladrow D, Unnithan V, Notholt J, Wegner A (eds) Earth system science: bridging the gaps between disciplines perspectives from a multi-disciplinary Helmholtz research school Springer briefs in earth system sciences. Springer, HeidelbergGoogle Scholar
  48. Pflaumann U, Sarnthein M, Chapman M, d’Abreu L, Funnell B, Huels M, Kiefer T, Maslin M, Schulz H, Swallow J, van Kreveld S, Vautravers M, Vogelsang E, Weinelt M (2003) Glacial North Atlantic: sea-surface conditions reconstructed by GLAMAP 2000. Paleoceanography. doi: 10.1029/2002PA000774 Google Scholar
  49. Raddatz TJ, Reick CH, Knorr W, Kattge J, Roeckner E, Schnur R, Schnitzler KG, Wetzel P, Jungclaus J (2007) Will the tropical land biosphere dominate the climate-carbon cycle feedback during the twenty-first century? Clim Dyn 29:565–574CrossRefGoogle Scholar
  50. Rhines PB (1986) Vorticity dynamics of the oceanic general-circulation. Annu Rev Fluid Mech 18:433–497CrossRefGoogle Scholar
  51. Rhines PB, Schopp R (1991) The wind-driven circulation: quasi-geostrophic simulations and theory for nonsymmetric winds. J Phys Oceanogr 21:1438–1469CrossRefGoogle Scholar
  52. Röckner E, Bäuml G, Bonaventura L, Brokopf R, Esch M, Giorgetta M, Hagemann S, Kirchner I, Kornblueh L, Manzini E, Rhodin A, Schlese U, Schulzweida U, Tompkins A (2003) The atmospheric general circulation model ECHAM5. Part 1: model description. MPI-Report 349(127), HamburgGoogle Scholar
  53. Siddall M, Rohling EJ, Almogi-Labin A, Hemleben Ch, Meischner D, Schmelzer I, Smeed DA (2003) Sea-level fluctuations during the last glacial cycle. Nature 423:853–858CrossRefGoogle Scholar
  54. Slowey NC, Curry WB (1992) Enhanced ventilation of the North-Atlantic subtropical gyre thermocline during the last glaciation. Nature 358:665–668CrossRefGoogle Scholar
  55. Sowers T, Alley RB, Jubenville J (2003) Ice core records of atmospheric N2O covering the last 106,000 years. Science 301:945–948CrossRefGoogle Scholar
  56. Stone EJ, Lunt DJ, Annan JD, Hargreaves JC (2013) Quantification of the Greenland ice sheet contribution to Last Interglacial sea level rise. Clim Past 9:621–639CrossRefGoogle Scholar
  57. Ullman DJ, LeGrande AN, Carlson AE, Anslow FS, Licciardi JM (2014) Assessing the impact of Laurentide Ice-Sheet topography on glacial climate. Clim Past 10:487–507CrossRefGoogle Scholar
  58. Van Meerbeeck CJ, Renssen H, Roche DM (2009) How did Marine isotope stage 3 and last glacial maximum climates differ?—perspectives from equilibrium simulations. Clim Past 5:33–51CrossRefGoogle Scholar
  59. Vautravers MJ, Shackleton NJ, Lopez-Martinez C, Grimalt JO (2004) Gulf Stream variability during marine isotope stage 3. Paleoceanography. doi: 10.1029/2003PA000966 Google Scholar
  60. Vavrus S, Kutzbach JE (2002) Sensitivity of the thermohaline circulation to increased CO2 and lowered topography. Geophys Res Lett. doi: 10.1029/2002GL014814 Google Scholar
  61. Waelbroeck C, Labeyrie L, Michel E, Duplessy JC, McManus JF, Lambeck K, Balbon E, Labracherie M (2002) Sea-level and deep water temperature changes derived from benthic foraminifera isotopic records. Quat Sci Rev 21:295–305CrossRefGoogle Scholar
  62. Weber SL, Drijfhout SS, Abe-Ouchi A, Crucifix M, Eby M, Ganopolski A, Murakami S, Otto-Bliesner B, Peltier WR (2007) The modern and glacial overturning circulation in the Atlantic ocean in PMIP coupled model simulations. Clim. Past 3:51–64. doi: 10.5194/cp-3-51-2007 CrossRefGoogle Scholar
  63. Wei W, Lohmann G (2012) Simulated Atlantic multidecadal oscillation during the holocene. J Clim 25:6989–7002CrossRefGoogle Scholar
  64. Wei W, Lohmann G, Dima M (2012) Distinct modes of internal variability in the global meridional overturning circulation associated with the Southern Hemisphere westerly winds. J Phys Oceanogr 42:785–801CrossRefGoogle Scholar
  65. Yoshimori M, Raible CC, Stocker TF, Renold M (2010) Simulated decadal oscillations of the Atlantic meridional overturning circulation in a cold climate state. Clim Dyn 34:101–121CrossRefGoogle Scholar
  66. Zhang X, Lohmann G, Knorr G, Xu X (2013) Different ocean states and transient characteristics in Last Glacial Maximum simulations and implications for deglaciation. Clim Past 9:2319–2333CrossRefGoogle Scholar
  67. Zhang X, Lohmann G, Knorr G, Purcell C (2014) Abrupt glacial climate shifts controlled by ice sheet changes. Nature 512:290 via a localpositive atmosphere–ocean–sea-ice feedbackin the North AtlanticCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • Xun Gong
    • 1
    • 2
    Email author
  • Xiangdong Zhang
    • 3
  • Gerrit Lohmann
    • 1
  • Wei Wei
    • 1
  • Xu Zhang
    • 1
  • Madlene Pfeiffer
    • 1
  1. 1.Alfred Wegener Institute, Helmholtz Centre for Polar and Marine ResearchBremerhavenGermany
  2. 2.School of Earth and Ocean SciencesCardiff UniversityCardiffUK
  3. 3.International Arctic Research Center and Department of Atmospheric SciencesUniversity of Alaska FairbanksFairbanksUSA

Personalised recommendations