Advertisement

Climate Dynamics

, Volume 45, Issue 7–8, pp 2193–2212 | Cite as

Regional climate modelling in CLARIS-LPB: a concerted approach towards twentyfirst century projections of regional temperature and precipitation over South America

  • E. Sánchez
  • S. Solman
  • A. R. C. Remedio
  • H. Berbery
  • P. Samuelsson
  • R. P. Da Rocha
  • C. Mourão
  • L. Li
  • J. Marengo
  • M. de Castro
  • D. Jacob
Article

Abstract

The results of an ensemble of regional climate model (RCM) simulations over South America are presented. This is the first coordinated exercise of regional climate modelling studies over the continent, as part of the CLARIS-LPB EU FP7 project. The results of different future periods, with the main focus on (2071–2100) is shown, when forced by several global climate models, all using the A1B greenhouse gases emissions scenario. The analysis is focused on the mean climate conditions for both temperature and precipitation. The common climate change signals show an overall increase of temperature for all the seasons and regions, generally larger for the austral winter season. Future climate shows a precipitation decrease over the tropical region, and an increase over the subtropical areas. These climate change signals arise independently of the driving global model and the RCM. The internal variability of the driving global models introduces a very small level of uncertainty, compared with that due to the choice of the driving model and the RCM. Moreover, the level of uncertainty is larger for longer horizon projections for both temperature and precipitation. The uncertainty in the temperature changes is larger for the subtropical than for the tropical ones. The current analysis allows identification of the common climate change signals and their associated uncertainties for several subregions within the South American continent.

Keywords

Regional climate modelling Climate change South America 

Notes

Acknowledgments

CLARIS LPB A Europe-South America Network for Climate Change Assessment and Impact Studies in La Plata Basin EU-FP7 project (proposal 212492). This work has also been supported by the following Grants: FONCyT—PICT-2012-1972, PIP-CONICET No. 112-201101-00189 and UBACYT2014 No. 20020130200233BA. We acknowledge the German Climate Computing Centre (DKRZ) computing facilities for our REMO simulations. The remarks and suggestions from the reviewers helped much to a more accurate and precise description of the results and uncertainties.

References

  1. Boulanger JP, Brasseur G, Carril AF, de Castro M, Degallier N, Ereño C, Treut HL, Marengo JA, Menéndez CG, Núñez MN, Penalba OC, Rolla AL, Rusticucci M, Terra R (2010) A Europe–South America network for climate change assessment and impact studies. Clim Change 98(3–4):307–329. doi: 10.1007/s10584-009-9734-8 CrossRefGoogle Scholar
  2. Cabré MF, Solman S, Nuñez M (2010) Creating regional climate change scenarios over southern South America for the 2020’s and 2050’s using the pattern scaling technique: validity and limitations. Clim Change 98(3–4):449–469CrossRefGoogle Scholar
  3. Carril A, Menéndez C, Remedio A, Robledo F, Sörensson A, Tencer B, Boulanger JP, De Castro M, Jacob D, Le Treut H, Li LZX, Penalba O, Pfeifer S, Rusticucci M, Salio P, Samuelsson P, Sanchez E, Zaninelli P (2012) Performance of a multi-RCM ensemble for South Eastern South America. Clim Dyn 39(12):2747–2768. doi: 10.1007/s00382-012-1573-z CrossRefGoogle Scholar
  4. Castro M, Gallardo C, Jylhä K, Tuomenvirta H (2007) The use of a climate-type classification for assessing climate change effects in Europe from an ensemble of nine regional climate models. Clim Change 81(S1):329–341CrossRefGoogle Scholar
  5. Christensen J, Kumar KK, Aldrian E, An SI, Cavalcanti I, de Castro M, Dong W, Goswami P, Hall A, Kanyanga J, Kitoh A, Kossin J, Lau NC, Renwick J, Stephenson D, Xie SP, Zhou T (2013) Climate phenomena and their relevance for future regional climate change. In: Stocker TF, Qin D, Plattner G-K, Tignor M, Allen SK, Boschung J, Nauels A, Xia Y, Bex V, Midgley PM (eds) Climate change 2013: the physical science basis. Contribution of working group I to the fifth assessment report of the intergovernmental panel on climate change. Cambridge University Press, New YorkGoogle Scholar
  6. Christensen JH, Christensen OB (2007) A summary of the PRUDENCE model projection of changes in European climate by the end of this century. Clim Change 81:1–30CrossRefGoogle Scholar
  7. Christensen JH, Carter T, Rummukainen M, Amanatidis G (2007) Evaluating the performance and utility of regional climate models: the PRUDENCE project. Clim Change 81(S1):1–6CrossRefGoogle Scholar
  8. Christensen JH, Hewitson B, Busuioc A, Chen A, Gao X, Held I, Jones R, Kolli RK, Kwon WT, Laprise R, Rueda VM, Mearns LO, Menéndez CG, Räisänen J, Rinke A, Sarr A, Whetton PH (2007) Regional climate projections. In: Climate change 2007: the physical science basis. Contribution of working group I to the fourth assessment report of the intergovernmental panel on climate change. Technical report, IPCC, WMOGoogle Scholar
  9. Déqué M, Rowell DP, Lüthi D, Giorgi F, Christensen JH, Rockel B, Jacob D, Kjellström E, Castro M, Van den Hurk B (2007) An intercomparison of regional climate simulations for Europe: assessing uncertainties in model projections. Clim Change 81(S1):53–70CrossRefGoogle Scholar
  10. Déqué M, Somot S, Sanchez-Gomez E, Goodess C, Jacob D, Lenderink G, Christensen O (2012) The spread amongst ensembles regional scenarios: regional climate models, driving general circulation models and interannual variability. Clim Dyn 38(5–6):951–964. doi: 10.1007/s00382-011-1053-x CrossRefGoogle Scholar
  11. der Linden PV, Mitchell JFB (2009) ENSEMBLES: climate change and its impacts: summary of research and results from the ENSEMBLES project. In: Technical report, Met Office Hadley Centre, FitzRoy Road, Exeter EX1 3PB, UKGoogle Scholar
  12. Flato G, Marotzke J, Abiodun B, Braconnot P, Chou S, Collins W, Cox P, Driouech F, Emori S, Eyring V, Forest C, Gleckler P, Guilyardi E, Jakob C, Kattsov V, Reason C, Rummukainen M (2013) Evaluation of climate models. In: Stocker TF, Qin D, Plattner G-K, Tignor M, Allen SK, Boschung J, Nauels A, Xia Y, Bex V, Midgley PM (eds) Climate change 2013: the physical science basis Contribution of working group I to the fifth assessment report of the intergovernmental panel on climate change. Cambridge University Press, New YorkGoogle Scholar
  13. Giorgi F (2014) Introduction to the special issue: the phase I CORDEX RegCM4 hyper-matrix (CREMA) experiment. Clim Change 125(1):1–5. doi: 10.1007/s10584-014-1166-4 CrossRefGoogle Scholar
  14. Giorgi F, Francisco R (2000) Evaluating uncertainties in the prediction of regional climate change. Geophys Res Lett 27(9):1295–1298CrossRefGoogle Scholar
  15. Giorgi F, Whetton PH, Jones R, Christensen JH, Mearns LO, Hewitson B, Von Storch H, Francisco R, Jack C (2001) Emerging patterns of simulated regional climatic changes for the 21st century due to anthropogenic forcings. Geophys Res Lett 28(L04703):3317–3320CrossRefGoogle Scholar
  16. Giorgi F, Jones C, Asrar GR (2009) Addressing climate information needs at the regional level: the CORDEX framework. World Meteorol Organ Bull 58(3):175Google Scholar
  17. Gordon C, Cooper C, Senior CA, Banks H, Gregory JM, Johns TC, Mitchell JF, Wood RA (2000) The simulation of SST, sea ice extents and ocean heat transports in a version of the Hadley Centre coupled model without flux adjustments. Clim Dyn 16(2–3):147–168CrossRefGoogle Scholar
  18. Grimm AM, Zilli MT (2009) Interannual variability and seasonal evolution of summer monsoon rainfall in South America. J Clim 22(9):2257–2275CrossRefGoogle Scholar
  19. Hawkins E, Sutton R (2009) The potential to narrow uncertainty in regional climate predictions. Bull Am Meteorol Soc 90(8):1095–1107CrossRefGoogle Scholar
  20. Hawkins E, Sutton R (2011) The potential to narrow uncertainty in projections of regional precipitation change. Clim Dyn 37(1–2):407–418CrossRefGoogle Scholar
  21. Hourdin F, Musat I, Bony S, Braconnot P, Codron F, Dufresne JL, Fairhead L, Filiberti MA, Friedlingstein P, Grandpeix JY et al (2006) The LMDZ4 general circulation model: climate performance and sensitivity to parametrized physics with emphasis on tropical convection. Clim Dyn 27(7–8):787–813CrossRefGoogle Scholar
  22. Jacob D, Barring L, Christensen OB, Christensen JH, de Castro M, Déqué M, Giorgi F, Hagemann S, Hirschi M, Jones R, Kjellström E, Lenderink G, Rockel B, Sánchez E, Schär C, Seneviratne SI, Somot S, Ulden AV, den Hurk BV (2007) An inter-comparison of regional climate models for Europe: model performance in present-day climate. Clim Change 81(S1):31–52CrossRefGoogle Scholar
  23. Jacob D, Elizalde A, Haensler A, Hagemann S, Kumar P, Podzun R, Rechid D, Remedio AR, Saeed F, Sieck K, Teichmann C, Willhelm C (2012) Assessing the transferability of the regional climate model REMO to different coordinated regional climate downscaling experiment (CORDEX) regions. Atmosphere 3(1):181–199CrossRefGoogle Scholar
  24. Jones C, Giorgi F, Asrar G (2011) The coordinated regional downscaling experiment: CORDEX an international downscaling link to CMIP5. CLIVAR Exch 16(2):34–40Google Scholar
  25. Kendon EJ, Jones RG, Kjellström E, Murphy JM (2010) Using and designing GCM–RCM ensemble regional climate projections. J Clim 23(24):6485–6503CrossRefGoogle Scholar
  26. Kjellström E, Boberg F, Castro M, Christensen JH, Nikulin G, Sánchez E (2010) On the use of daily and monthly temperature and precipitation statistics as a performance indicator for regional climate models. Clim Res 44:135–150. doi: 10.3354/cr00932 CrossRefGoogle Scholar
  27. Kjellström E, Nikulin G, Hansson U, Strandberg G, Ullerstig A (2011) 21st century changes in the European climate: uncertainties derived from an ensemble of regional climate model simulations. Tellus-A 63(1):24–40CrossRefGoogle Scholar
  28. Marengo J, Chou S, Torres R, Giarolla A, Alves L, Lyra A (2014) Climate change in central and South America: recent trends, future projections, and impacts on regional agriculture. In: CCAFS working paper 73 CGIAR research program on climate change, agriculture and food security (CCAFS) Copenhagen, DenmarkGoogle Scholar
  29. Marengo JA, Ambrizzi T, Da Rocha RP, Alves LM, Cuadra SV, Valverde MC, Torres RR, Santos DC, Ferraz SE (2010) Future change of climate in South America in the late twenty-first century: intercomparison of scenarios from three regional climate models. Clim Dyn 35(6):1073–1097CrossRefGoogle Scholar
  30. Mearns L, Sain S, Leung L, Bukovsky M, McGinnis S, Biner S, Caya D, Arritt R, Gutowski W, Takle E, Jones R, Leung R, M-Okia W, McDaniel L, Nunes A, Qian Y, Roads J, Sloan L, Snyder M (2013) Climate change projections of the north american regional climate change assessment program (NARCCAP). Clim Change 120(4):965–975CrossRefGoogle Scholar
  31. Mearns LO, Arritt R, Biner S, Bukovsky MS, McGinnis S, Sain S, Caya D, Correia J Jr, Flory D, Gutowski W, Takle ES, Jones R, Leung R, Moufouma-Okia W, McDaniel L, Nunes AMB, Qian Y, Roads J, Sloan L, Snyder M (2012) The North American regional climate change assessment program: overview of phase I results. Bull Am Meteorol Soc 93(9):1337–1362CrossRefGoogle Scholar
  32. Menéndez C, de Castro M, Boulanger JP, Donofrio A, Sanchez E, Sörensson A, Blazquez J, Elizalde A, Jacob D, Le Treut H, Li ZX, Núñez MN, Pessacg N, Pfeiffer S, Rojas M, Rolla A, Samuelsson P, Solman SA, Teichmann C (2010) Downscaling extreme month-long anomalies in southern South America. Clim Change 98(3–4):379–403CrossRefGoogle Scholar
  33. Mitchell TD, Jones PD (2005) An improved method of constructing a database of monthly climate observations and associated high-resolution grids. Int J Climatol 25(6):693–712CrossRefGoogle Scholar
  34. Nakicenovic N, Swart R (eds) (2000) Emissions scenarios: a special report of working group III of the intergovernmental panel on climate change. Cambridge University Press, CambridgeGoogle Scholar
  35. Paegle JN, Byerle LA, Mo KC (2000) Intraseasonal modulation of South American summer precipitation. Mon Weather Rev 128(3):837–850CrossRefGoogle Scholar
  36. Reboita M, da Rocha R, Dias C, Ynoue R (2014) Climate projections for South America: RegCM3 driven by HadCM3 and ECHAM5. Adv Meteorol. doi: 10.1155/2014/376738
  37. Roeckner E, Brokopf R, Esch M, Giorgetta M, Hagemann S, Kornblueh L, Manzini E, Schlese U, Schulzweida U (2006) Sensitivity of simulated climate to horizontal and vertical resolution in the ECHAM5 atmosphere model. J Clim 19(16):3771–3791CrossRefGoogle Scholar
  38. Ruti PM, Williams JE, Hourdin F, Guichard F, Boone A, Van Velthoven P, Favot F, Musat I, Rummukainen M, Domnguez M, Gaertner M, Lafore JP, Losada T, Rodriguez de Fonseca MB, Polcher J, Giorgi F, Xue Y, Bouarar I, Law K, Josse B, Barret B, Yang X, Mari C, Traore AK (2011) The West African climate system: a review of the AMMA model inter-comparison initiatives. Atmos Sci Lett 12(1):116–122. doi: 10.1002/asl.305 CrossRefGoogle Scholar
  39. Solman SA (2013) Regional climate modeling over South America: a review. Adv Meteorol. doi: 10.1155/2013/504357
  40. Solman SA, Pessacg NL (2012) Evaluating uncertainties in regional climate simulations over south america at the seasonal scale. Clim Dyn 39(1–2):59–76CrossRefGoogle Scholar
  41. Solman SA, Sanchez E, Samuelsson P, da Rocha R, Li L, Marengo J, Pessacg N, Remedio A, Chou SC, Berbery H, Treut HL, de Castro M, Jacob D (2013) Evaluation of an ensemble of regional climate model simulations over South America driven by the ERA-Interim reanalysis: models’ performance and uncertainties. Clim Dyn 41:1139–1157. doi: 10.1007/s00382-013-1667-2 CrossRefGoogle Scholar
  42. Tapiador FJ, Sánchez E, Gaertner MA (2007) Regional changes in precipitation in Europe under an increased greenhouse emissions scenario. Geophys Res Lett 34:l06701. doi: 10.1029/2006GL029035 Google Scholar
  43. Teichmann C, Eggert B, Elizalde A, Haensler A, Jacob D, Kumar P, Moseley C, Pfeifer S, Rechid D, Remedio AR,  Ries H, Petersen J, Preuschmann S, Raub T, Saeed F, Sieck K, Weber T (2013) How does a regional climate model modify the projected climate change signal of the driving GCM: a study over different CORDEX regions using REMO. Atmosphere 4(2):214–236CrossRefGoogle Scholar
  44. Torres RR, Marengo JA (2013) Uncertainty assessments of climate change projections over South America. Theor Appl Climatol 112(1–2):253–272CrossRefGoogle Scholar
  45. Vera C, Silvestri G (2009) Precipitation interannual variability in South America from the WCRP-CMIP3 multi-model dataset. Clim Dyn 32(7–8):1003–1014CrossRefGoogle Scholar
  46. Vera C, Silvestri G, Liebmann B, Gonzlez P (2006) Climate change scenarios for seasonal precipitation in South America from IPCC-AR4 models. Geophys Res Lett. doi: 10.1029/2006GL025759

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • E. Sánchez
    • 1
  • S. Solman
    • 2
  • A. R. C. Remedio
    • 3
  • H. Berbery
    • 4
  • P. Samuelsson
    • 5
  • R. P. Da Rocha
    • 6
  • C. Mourão
    • 7
  • L. Li
    • 8
  • J. Marengo
    • 7
  • M. de Castro
    • 1
  • D. Jacob
    • 3
  1. 1.Faculty of Environmental Sciences and BiochemistryUniversity of Castilla La ManchaToledoSpain
  2. 2.Centro de Investigaciones del Mar y la Atmósfera (CIMA/CONICET-UBA), DCAO/FCEN-UBA UMI IFAECI/CNRSCiudad Universitaria Pabellón II Piso 2Buenos AiresArgentina
  3. 3.Climate Service Center 2.0HamburgGermany
  4. 4.Earth System Science Interdisciplinary Center (ESSIC)University of MarylandCollege ParkUSA
  5. 5.Rossby CentreSMHINorrköpingSweden
  6. 6.Dept Ciencias Atmosféricas, Instituto de Astronomía, Geofísica e Ciencias AtmosféricasUniversidade de São PauloSão PauloBrazil
  7. 7.Centro Ciencia Sistema Terrestre-Instituto Nacional Pesquisas Espaciais (CCST INPE)Cachoeira PaulistaBrazil
  8. 8.Laboratoire de Météorologie DynamiqueIPSL, CNRS/UPMCParisFrance

Personalised recommendations