Climate Dynamics

, Volume 44, Issue 9–10, pp 2609–2621 | Cite as

Pacific variability under present-day and Middle Miocene boundary conditions

  • Mario KrappEmail author
  • Johann H. Jungclaus


We use the coupled climate model MPI-ESM to show that for higher CO2 levels the El Niño-Southern Oscillation (ENSO) and the Pacific Decadal Oscillation (PDO) merge into a single mode of Pacific variability, regardless of present-day or Middle Miocene (~15 Ma) topographic boundary conditions. Hence, topographic differences—determining the landscape of past climates—play a smaller role for Pacific variability than previously thought. We attribute the single variability mode to resonance between these two oscillation patterns. In order to estimate the strength of the resonance we compute the spectral power of the ENSO and PDO time series and their coherence. We find that for both Middle Miocene and present-day topographic conditions, higher CO2 forcing leads to stronger resonance between ENSO and PDO. Our results show that (1) stronger CO2 forcing enhances Pacific variability resulting in stronger “atmospheric bridge” and that (2) past climates are likely to exhibit Pacific variability corresponding either to ENSO, PDO, or our proposed single mode.


Climate variability ENSO PDO Middle Miocene MPI-ESM 



This work has been accomplished within the project FOR 1070 Understanding Cenozoic Climate Cooling of the German Research Foundation (DFG). All model integrations were performed at the high- performance computing platforms of the German Climate Computing Centre (DKRZ) in Hamburg. We would like to thank two anonymous reviewers for their help to improve the manuscript. We also would like to thank Davide Zanchettin for many fruitful discussions and his useful comments on earlier versions of this manuscript. Also thanks to Jochem Marotzke for helping with the introduction. Lastly, MK thanks Romy Schirrmeister for inquiring a finished manuscript.


  1. Batenburg SJ, Reichart GJ, Jilbert T, Janse M, Wesselingh FP, Renema W (2011) Interannual climate variability in the Miocene: high resolution trace element and stable isotope ratios in giant clams. Palaeogeogr Palaeoclimatol Palaeoecol 306(1–2):75–81. doi: 10.1016/j.palaeo.2011.03.031 CrossRefGoogle Scholar
  2. Brovkin V, Raddatz T, Reick CH, Claussen M, Gayler V (2009) Global biogeophysical interactions between forest and climate. Geophys Res Lett 36(7):L07405. doi: 10.1029/2009GL037543 CrossRefGoogle Scholar
  3. Bryden HL, Roemmich DH, Church JA (1991) Ocean heat transport across 24°N in the Pacific. Deep Sea Res Part A Oceanogr Res Pap 38(3): 297–324. ISSN 0198–0149. doi: 10.1016/0198-0149(91)90070-V
  4. Clarke AJ, Van Gorder S, Colantuono G (2007) Wind stress curl and ENSO discharge/recharge in the equatorial Pacific. J Phys Oceanogr 37(4):1077–1091. doi: 10.1175/JPO3035.1 CrossRefGoogle Scholar
  5. Collins M, An SI, Cai W, Ganachaud A, Guilyardi E, Jin FF, Jochum M, Lengaigne M, Power S, Timmermann A et al (2010) The impact of global warming on the tropical Pacific Ocean and El Niño. Nat Geosci 3(6):391–397. doi: 10.1038/ngeo868 CrossRefGoogle Scholar
  6. Deser C, Alexander MA, Xie S-P, Phillips AS (2010) Sea surface temperature variability: patterns and mechanisms. Annu Rev Mar Sci 2(1):115–143. doi: 10.1146/annurev-marine-120408-151453 CrossRefGoogle Scholar
  7. Di Lorenzo E, Cobb KM, Furtado JC, Schneider N, Anderson BT, Bracco A, Alexander MA, Vimont DJ (2010) Central Pacific El Niño and decadal climate change in the North Pacific Ocean. Nat Geosci 3(11):762–765. doi: 10.1038/ngeo984 CrossRefGoogle Scholar
  8. Galeotti S, von der Heydt A, Huber M, Bice D, Dijkstra H, Jilbert T, Lanci L, Reichart GJ (2010) Evidence for active El Niño Southern Oscillation variability in the Late Miocene greenhouse climate. Geology 38(5):419–422. doi: 10.1130/G30629.1 CrossRefGoogle Scholar
  9. Garric G, Huber M (2003) Quasi-decadal variability in paleoclimate records: sunspot cycles or intrinsic oscillations? Paleoceanography. doi: 10.1029/2002PA000869 Google Scholar
  10. Guilyardi E, Wittenberg A, Fedorov A, Collins M, Wang C, Capotondi A, van Oldenborgh JG (2009) Understanding El Niño in ocean–atmosphere general circulation models: progress and challenges. Bull Am Meteorol Soc 90:325–340. doi: 10.1175/2008BAMS2387.1 CrossRefGoogle Scholar
  11. Hasselmann K (1976) Stochastic climate models part I. Theory. Tellus 28(6):473–485. doi: 10.1111/j.2153-3490.1976.tb00696.x CrossRefGoogle Scholar
  12. Haywood AM, Valdes PJ, Peck VL (2007) A permanent El Niño-like state during the Pliocene. Paleoceanography 22(26):PA1213. doi: 10.1029/2006PA001323 Google Scholar
  13. Herold N, Seton M, Müller RD, You Y, Huber M (2008) Middle Miocene tectonic boundary conditions for use in climate models. Geochem Geophys Geosyst 9(10):Q10009. doi: 10.1029/2008GC002046 Google Scholar
  14. Huber M, Caballero R (2003) Eocene El Niño: evidence for robust tropical dynamics in the “hothouse”. Science 299(5608):877–881. doi: 10.1126/science.1078766 CrossRefGoogle Scholar
  15. Ivany LC, Brey T, Huber M, Buick DP, Schöne BR (2011) El Niño in the Eocene greenhouse recorded by fossil bivalves and wood from Antarctica. Geophys Res Lett 38(16):L16709. doi: 10.1029/2011GL048635 CrossRefGoogle Scholar
  16. Jungclaus JH, Botzet M, Haak H, Marotzke J, Mikolajewicz U, Roeckner E, Keenlyside N, Latif M, Luo JJ (2006) Ocean circulation and tropical variability in the coupled model ECHAM5/MPI-OM. J Clim 19:3952–3972. doi: 10.1175/JCLI3827.1 CrossRefGoogle Scholar
  17. Kessler WS (2002) Is ENSO a cycle or a series of events? Geophys Res Lett 29(23):40-1–40-4. doi: 10.1029/2002GL015924
  18. Krapp M, Jungclaus JH (2011) The Middle Miocene climate as modelled in an atmosphere–ocean–biosphere model. Clim Past 7(4):1169–1188. doi: 10.5194/cp-7-1169-2011 CrossRefGoogle Scholar
  19. Lee T, McPhaden MJ (2010) Increasing intensity of El Niño in the central-equatorial Pacific. Geophys Res Lett 37(14):L14603CrossRefGoogle Scholar
  20. Leetma A (2013) IGOSS leetma d20C data.
  21. Liu Z, Alexander M (2007) Atmospheric bridge, oceanic tunnel, and global climatic teleconnections. Rev Geophys 45(2):RG2005. doi: 10.1029/2005RG000172 CrossRefGoogle Scholar
  22. Liu Z (2012) Dynamics of interdecadal climate variability: a historical perspective. J Clim 25:1963–1995. doi: 10.1175/2011JCLI3980.1 CrossRefGoogle Scholar
  23. Lyle M, Barron J, Bralower TJ, Huber M, Lyle AO, Ravelo AC, Rea DK, Wilson PA (2008) Pacific Ocean and Cenozoic evolution of climate. Rev Geophys 46(2):RG2002. doi: 10.1029/2005RG000190 CrossRefGoogle Scholar
  24. Mantua NJ, Hare SR, Zhang Y, Wallace JM, Francis RC et al (1997) A Pacific interdecadal climate oscillation with impacts on salmon production. Bull Am Meteorol Soc 78(6):1069–1080CrossRefGoogle Scholar
  25. Manucharyan GE, Fedorov AV (2014) Robust ENSO across a wide range of climate. J Clim 27:5836–5850. doi: 10.1175/JCLI-D-13-00759.1 CrossRefGoogle Scholar
  26. McPhaden MJ, Zebiak SE, Glantz MH (2006) ENSO as an integrating concept in earth science. Science 314(5806):1740–1745CrossRefGoogle Scholar
  27. Müller WA, Roeckner E (2008) ENSO teleconnections in projections of future climate in ECHAM5/MPI-OM. Clim Dyn 31(5):533–549. doi: 10.1007/s00382-007-0357-3 CrossRefGoogle Scholar
  28. Neale RB, Richter JH, Jochum M (2008) The impact of convection on ENSO: from a delayed oscillator to a series of events. J Clim 21(22):5904–5924. doi: 10.1175/2008JCLI2244.1 CrossRefGoogle Scholar
  29. Neelin JD, Battisti DS, Hirst AC, Jin FF, Wakata Y, Yamagata T, Zebiak SE (1998) ENSO theory. J Geophys Res 103(C7):14261–14290. doi: 10.1029/97JC03424 CrossRefGoogle Scholar
  30. Newman M, Compo GP, Alexander MA (2003) ENSO-forced variability of the Pacific decadal oscillation. J Clim 16(23):3853–3857. doi: 10.1175/1520-0442(2003)016<3853:EVOTPD>2.0.CO;2
  31. Raddatz TJ, Reick CH, Knorr W, Kattge J, Roeckner E, Schnur R, Schnitzler KG, Wetzel P, Jungclaus J (2007) Will the tropical land biosphere dominate the climate-carbon cycle feedback during the twenty-first century? Clim Dyn 29(6):565–574. doi: 10.1007/s00382-007-0247-8 CrossRefGoogle Scholar
  32. Rayner NA, Parker DE, Horton EB, Folland CK, Alexander LV, Rowell DP, Kent EC, Kaplan A (2003) Global analyses of sea surface temperature, sea ice, and night marine air temperature since the late nineteenth century. J Geophys Res 108(D14):4407. doi: 10.1029/2002JD002670 CrossRefGoogle Scholar
  33. Roeckner E, Bäuml G, Bonaventura L, Brokopf R, Esch M (2003) The atmospheric general circulation model Echam5. Part I: model description. Technical report, Max-Planck Institute for MeteorologyGoogle Scholar
  34. Scroxton N, Bonham SG, Rickaby REM, Lawrence SHF, Hermoso M, Haywood AM (2011) Persistent El Niño-Southern Oscillation variation during the Pliocene Epoch. Paleoceanography 26:PA2215. doi: 10.1029/2010PA002097 CrossRefGoogle Scholar
  35. Smith Thomas M, Reynolds Richard W, Peterson Thomas C, Lawrimore Jay (2008) Improvements to NOAA’s historical merged land–ocean surface temperature analysis (1880–2006). J Clim 21(10):2283–2296. doi: 10.1175/2007JCLI2100.1 CrossRefGoogle Scholar
  36. Suarez MJ, Schopf PS (1988) A delayed action oscillator for ENSO. J Atmos Sci 45(21):3283–3287CrossRefGoogle Scholar
  37. Thompson CJ, Battisti DS (2001) A linear stochastic dynamical model of ENSO. Part II: analysis. J Clim 14(4):445–466CrossRefGoogle Scholar
  38. Trenberth KE (1984) Signal versus noise in the southern oscillation. Mon Weather Rev 112(2):326–332. doi: 10.1175/1520-0493(1984)112<0326:SVNITS>2.0.CO;2
  39. Valcke S (2006) OASIS3 User Guide (prism\_2-5). Technical Report 3, PRISM. Last access July 2010
  40. von der Heydt AS, Nnafie A, Dijkstra HA (2011) Cold tongue/warm pool and ENSO dynamics in the Pliocene. Clim Past 7(3): 903–915. doi: 10.5194/cp-7-903-2011.
  41. Von Der Heydt Anna S, Dijkstra Henk A (2011) The impact of ocean gateways on ENSO variability in the Miocene. Geol Soc Lond Spec Publ 355(1):305–318. doi: 10.1144/SP355.15 CrossRefGoogle Scholar
  42. von Storch Hans, Zwiers Francis W (1999) Statistical analysis in climate research. Cambridge University Press, CambridgeGoogle Scholar
  43. Wang C, Picaut J (2004) Understanding ENSO physics—a review. Earth Clim Ocean Atmos Interact Geophys Monogr 147:21–48. doi: 10.1029/147GM02 CrossRefGoogle Scholar
  44. Watanabe T, Suzuki A, Minobe S, Kawashima T, Kameo K, Minoshima K, Aguilar YM, Wani R, Kawahata H, Sowa K et al (2011) Permanent El Niño during the Pliocene warm period not supported by coral evidence. Nature 471(7337):209–211. doi: 10.1038/nature09777 CrossRefGoogle Scholar
  45. Yeh SW, Kug JS, Dewitte B, Kwon MH, Kirtman BP, Jin FF (2009) El Niño in a changing climate. Nature 461(7263):511–514. doi: 10.1038/nature08316 CrossRefGoogle Scholar
  46. Yim Bo Young, Noh Yign, Yeh Sang-Wook, Kug Jong-Seong, Min HongSik, Qiu Bo (2013) Ocean mixed layer processes in the Pacific Decadal Oscillation in coupled general circulation models. Clim Dyn 41(5–6):1407–1417. doi: 10.1007/s00382-012-1630-7 CrossRefGoogle Scholar
  47. Zebiak SE, Cane MA (1987) A model El Niño-Southern Oscillation. Mon Weather Rev 115(10):2262–2278CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  1. 1.Max Planck Institute for MeteorologyHamburgGermany
  2. 2.Potsdam Institute for Climate Impact ResearchPotsdamGermany

Personalised recommendations