Advertisement

Climate Dynamics

, Volume 44, Issue 11–12, pp 2965–2977 | Cite as

Different El Niño types and intense typhoons in the Western North Pacific

  • Wei Zhang
  • Yee LeungEmail author
  • Klaus Fraedrich
Article

Abstract

This study shows that the occurrence of intense typhoons in the western North Pacific is significantly higher in the autumns of the Central Pacific (CP), compared to Eastern Pacific El Niño years. Specifically, (1) The higher occurrence of intense typhoons in CP El Niño autumns is related to a longer typhoon lifespan, maximum potential intensity, ocean heat content, vertical shear of the zonal wind (850–200 hPa), outgoing long-wave radiation, and moist static energy averaged over 1,000–500 hPa. (2) A longer typhoon lifespan in CP El Niño autumns is caused by the westward shift of the subtropical high, which tends to steer typhoon to the west and northwest.

Keywords

CP El Niño EP El Niño Intense typhoon Western North Pacific 

Notes

Acknowledgments

This research was jointly supported by the Geographical Modeling and Geocomputation program under the Focused Innovation Scheme of The Chinese University of Hong Kong, Open Research Funding Program of KLGIS of Ministry of Education at East China Normal University (Grant No. KLGIS2012A04), the Startup Foundation for Introducing Talent of NUIST, the Priority Academic Program Development (PAPD) of Jiangsu Higher Education Institutions, Jiangsu Natural Science Funds for Distinguished Young Scholar (BK20140047) and National Natural Science Foundation of China (Grant No.: 41201045).

References

  1. Anthes RA et al (2006) Hurricanes and global warming-potential linkages and consequences. Bull Am Meteorol Soc 87(5):623–628CrossRefGoogle Scholar
  2. Ashok K et al (2007) El Niño Modoki and its possible teleconnection. J Geophys Res 112:C11007CrossRefGoogle Scholar
  3. Bengtsson L, Lighthill J, Pearce RP (1982a), The factors determining radial flow and eye formation in an intensifying tropical cyclone. In: Ghil M, Sadourny R, Sundermann J (eds) Intense atmospheric vortices. Topics in atmospheric and oceanographic sciences. Springer, Berlin, pp 131–146CrossRefGoogle Scholar
  4. Bengtsson L, Lighthill J, Gray WM (1982b) Tropical cyclone genesis and intensification. In: Ghil M, Sadourny R, Sundermann J (eds) Intense atmospheric vortices. Topics in atmospheric and oceanographic sciences. Springer, Berlin, pp 3–20CrossRefGoogle Scholar
  5. Bister M, Emanuel KA (2002) Low frequency variability of tropical cyclone potential intensity, 1, Interannual to interdecadal variability. J Geophys Res 107(D24):4801. doi: 10.1029/2001JD000776 CrossRefGoogle Scholar
  6. Camargo SJ (2013) Global and regional aspects of tropical cyclone activity in the CMIP5 models. J Clim 26:9880–9902CrossRefGoogle Scholar
  7. Camargo SJ, Sobel AH (2005) Western North Pacific tropical cyclone intensity and ENSO. J Clim 18(15):2996–3006CrossRefGoogle Scholar
  8. Camargo SJ, Robertson AW, Gaffney SJ, Smyth P, Ghil M (2007) Cluster analysis of typhoon tracks. Part II: Large-scale circulation and ENSO. J Clim 20(14):3654–3676CrossRefGoogle Scholar
  9. Carton JA, Chepurin G, Cao X, Giese BS (2000a) A simple ocean data assimilation analysis of the global upper ocean 1950–1995, Part 1: methodology. J Phys Oceanogr 30:294–309CrossRefGoogle Scholar
  10. Carton JA, Chepurin G, Cao X (2000b) A simple ocean data assimilation analysis of the global upper ocean 1950–1995 Part 2: results. J Phys Oceanogr 30:311–326CrossRefGoogle Scholar
  11. Chan JCL (2006) Comment on “changes in tropical cyclone number, duration, and intensity in a warming environment”. Science 311(5768):1713CrossRefGoogle Scholar
  12. Chan JCL (2007) Interannual variations of intense typhoon activity. Tellus A 59(4):455–460CrossRefGoogle Scholar
  13. Chan JCL (2008) Decadal variations of intense typhoon occurrence in the western North Pacific. Proc R Soc A-Math Phys Eng Sci 464(2089):249–272CrossRefGoogle Scholar
  14. Chan JCL, Liu K (2004) Global warming and western north pacific typhoon activity from an observational perspective. J Clim 17:4590–4602CrossRefGoogle Scholar
  15. Chen G (2011) How does shifting Pacific Ocean warming modulate on tropical cyclone frequency over the South China Sea? J Clim 24:4695–4700CrossRefGoogle Scholar
  16. Chen G, Tam C-Y (2010) Different impacts of two kinds of Pacific Ocean warming on tropical cyclone frequency over the western North Pacific. Geophys Res Lett 37(1):L01803Google Scholar
  17. Craig G, Gray S (1996) CISK or WISHE as the mechanism for tropical cyclone intensification. J Atmos Sci 53(23):3528–3540CrossRefGoogle Scholar
  18. DeMaria M (1996) The effect of vertical shear on tropical cyclone intensity change. J Atmos Sci 53(14):2076–2088CrossRefGoogle Scholar
  19. DeMaria M, Kaplan J (1994) Sea surface temperature and the maximum intensity of Atlantic tropical cyclones. J Clim 7(9):1324–1334CrossRefGoogle Scholar
  20. Di Lorenzo E et al (2010) Central Pacific El Niño and decadal climate change in the North Pacific Ocean. Nat Geosci 3(11):762–765CrossRefGoogle Scholar
  21. Dowdy AJ et al (2012) Tropical cyclone climatology of the South Pacific Ocean and its relationship to El Niño-Southern oscillation. J Clim 25(18):6108–6122CrossRefGoogle Scholar
  22. Emanuel KA (1986) An air-sea interaction theory for tropical cyclones. Part I. J Atmos Sci 42:1062–1071CrossRefGoogle Scholar
  23. Emanuel KA (1988) The maximum intensity of Hurricanes. J Atmos Sci 45:1143–1155CrossRefGoogle Scholar
  24. Emanuel KA (1995) Sensitivity of tropical cyclones to surface exchange coefficients and a revised steady-state model incorporating eye dynamics. J Atmos Sci 52:3969–3976CrossRefGoogle Scholar
  25. Emanuel KA (1997) Some aspects of hurricane inner-core dynamics and energetics. J Atmos Sci 54:1014–1026CrossRefGoogle Scholar
  26. Emanuel KA (1999) Thermodynamic control of hurricane intensity. Nature 401:665–669CrossRefGoogle Scholar
  27. Emanuel KA (2013) Downscaling CMIP5 climate models shows increased tropical cyclone activity over the 21st century. Proc Natl Acad Sci 110:12219–12224CrossRefGoogle Scholar
  28. Gray WM (1968) Global view of origin of tropical disturbances and storms. Mon Weather Rev 96(10):669–700CrossRefGoogle Scholar
  29. Gray WM (1998) The formation of tropical cyclones. Meteorol Atmos Phys 67(1–4):37–69CrossRefGoogle Scholar
  30. Ha Y, Zhong Z, Yang X, Sun Y (2013) Different Pacific ocean warming decaying types and Northwest Pacific tropical cyclone activity. J Clim 26:8979–8994CrossRefGoogle Scholar
  31. Hong C-C et al (2011) Impacts of central Pacific and eastern Pacific El Niños on tropical cyclone tracks over the western North Pacific. Geophys Res Lett 38(16):L16712Google Scholar
  32. Huang F, Xu S (2010) Super typhoon activity over the western North Pacific and its relationship with ENSO. J Ocean Univ China 9(2):123–128CrossRefGoogle Scholar
  33. Kalnay E et al (1996) The NCEP/NCAR 40-year reanalysis project. Bull Am Meteorol Soc 77(3):437–471CrossRefGoogle Scholar
  34. Kamahori H et al (2006) Variability in intense tropical cyclone days in the Western North Pacific. SOLA 2:104107CrossRefGoogle Scholar
  35. Kanada S, Wada A, Sugi M (2013) Future changes in structures of extremely intense tropical cyclones using a 2-km mesh nonhydrostatic model. J Clim 26(24):9986–10005CrossRefGoogle Scholar
  36. Kim ST, Yu J-Y (2012) The two types of ENSO in CMIP5 models. Geophys Res Lett 39:L11704Google Scholar
  37. Kim HM et al (2009) Impact of shifting patterns of Pacific Ocean warming on North Atlantic tropical cyclones. Science 325(5936):77CrossRefGoogle Scholar
  38. Kim H-M et al (2011) Modulation of North Pacific tropical cyclone activity by three phases of ENSO. J Clim 24(6):1839–1849CrossRefGoogle Scholar
  39. Klotzbach PJ (2006) Trends in global tropical cyclone activity over the past twenty years (1986–2005). Geophys Res Lett 33(10):L10805Google Scholar
  40. Knapp Kenneth R, Knaff John A, Sampson Charles R, Riggio Gustavo M, Schnapp Adam D (2013) A pressure-based analysis of the historical western north pacific tropical cyclone intensity record. Mon Weather Rev 141:2611–2631CrossRefGoogle Scholar
  41. Knutson TR, McBride JL, Chan J, Emanuel K, Holland G, Landsea C, Held I, Kossin JP, Srivastava A, Sugi M (2010) Tropical cyclones and climate change. Nat Geosci 3(3):157–163CrossRefGoogle Scholar
  42. Kossin J, Knapp K, Vimont D, Murnane R, Harper B (2007) A globally consistent reanalysis of hurricane variability and trends. Geophys Res Lett 34(4):L04815Google Scholar
  43. Kug J-S et al (2009) Two types of El Niño events: cold tongue El Niño and warm pool El Niño. J Clim 22(6):1499–1515CrossRefGoogle Scholar
  44. Kug J-S, Ham Y-G, Lee J-Y, Jin F-F (2012) Improved simulation of two types of El Niño in CMIP5 models. Environ Res Lett 7:034002CrossRefGoogle Scholar
  45. Kurihara Y (1976) On the development of spiral bands in a tropical cyclone. J Atmos Sci 33:940–958CrossRefGoogle Scholar
  46. Landsea CW et al (2006) Can we detect trends in extreme tropical cyclones? Science 313(5786):452–454CrossRefGoogle Scholar
  47. Lee S-K et al (2010) On the impact of central Pacific warming events on Atlantic tropical storm activity. Geophys Res Lett 37(17):L17702Google Scholar
  48. Li RCY, Zhou W (2012) Changes in western pacific tropical cyclones associated with the El Niño-Southern oscillation cycle. J Clim 25(17):5864–5878CrossRefGoogle Scholar
  49. Liebmann B, Smith CA (1996) Description of a complete (Interpolated) outgoing longwave radiation dataset. Bull Am Meteorol Soc 77:1275–1277Google Scholar
  50. Lin II, Wu CC, Pun I-F (2008) Upper ocean thermal structure and the western North Pacific category-5 typhoons—Part I: ocean features and category-5 typhoons. Mon Weather Rev 136(9):3288–3306CrossRefGoogle Scholar
  51. Lin II, Pun I-F, Wu C-C (2009) Upper ocean thermal structure and the western North Pacific category-5 typhoons Part II: dependence on translation speed. Mon Weather Rev 137(11):3744–3757CrossRefGoogle Scholar
  52. Lin II, Goni G, Knaff J, Forbes C, Ali MM (2013a) Ocean heat content for tropical cyclone intensity forecasting and its impact on storm surge. Nat Hazards 66:1481–1500CrossRefGoogle Scholar
  53. Lin I-I, Black P, Price JF, Yang C-Y, Chen SS, Lien C-C, Harr P, Chi N-H, Wu C-C, D’Asaro EA (2013b) An ocean coupling potential intensity index for tropical cyclones. Geophys Res Lett 40:1878–1882. doi: 10.1002/grl.50091 CrossRefGoogle Scholar
  54. McTaggart-Cowan R et al (2007) Hurricane Katrina (2005). Part I: complex life cycle of an intense tropical cyclone. Mon Weather Rev 135(12):3905–3926CrossRefGoogle Scholar
  55. Merrill RT (1988) Environmental influences on hurricane intensification. J Atmos Sci 45:1678–1687CrossRefGoogle Scholar
  56. Murakami H, Wang B, Kitoh A (2011) Future change of western North Pacific typhoons: projections by a 20-km-mesh global atmospheric model*. J Clim 24(4):1154–1169CrossRefGoogle Scholar
  57. Murakami H, Wang Y, Yoshimura H, Mizuta R, Sugi M, Shindo E, Adachi Y, Yukimoto S, Hosaka M, Kusunoki S, Ose T, Kitoh A (2012) Future changes in tropical cyclone activity projected by the new high-resolution MRI-AGCM*. J Clim 25:3237–3260CrossRefGoogle Scholar
  58. Powell MD, Aberson SD (2001) Accuracy of United States tropical cyclone landfall forecasts in the Atlantic basin (1976–2000). Bull Am Meteorol Soc 82(12):2749–2767CrossRefGoogle Scholar
  59. Pradhan P, Preethi B, Ashok K, Krishnan R, Sahai A (2011) Modoki, Indian Ocean Dipole, and western North Pacific typhoons: possible implications for extreme events. J Geophys Res 116(D18):D18108CrossRefGoogle Scholar
  60. Rayner N et al (2003) Global analyses of sea surface temperature, sea ice, and night marine air temperature since the late nineteenth century. J Geophys Res 108(D14):4407CrossRefGoogle Scholar
  61. Scharroo R, Smith WHF, Lillibridge JL (2005) Satellite altimetry and the intensification of hurricane Katrina. EOS Trans AGU 86:366CrossRefGoogle Scholar
  62. Shay LK, Goni GJ, Black PG (2000) Effects of a warm oceanic feature on Hurricane Opal. Mon Weather Rev 128:1366–1383CrossRefGoogle Scholar
  63. Taschetto AS, Gupta AS, Jourdain NC, Santoso A, Ummenhofer CC, England MH (2014) Cold tongue and warm pool ENSO events in CMIP5: mean state and future projections. J Clim 27:2861–2885CrossRefGoogle Scholar
  64. Tu JY et al (2011) An abrupt increase of intense typhoons over the western North Pacific in early summer. Environ Res Lett 6(3):034013CrossRefGoogle Scholar
  65. Wada A, Chan JCL (2008) Relationship between typhoon activity and upper ocean heat content. Geophys Res Lett 35:L17 603CrossRefGoogle Scholar
  66. Wang B, Chan JCL (2002) How strong ENSO events affect tropical storm activity over the Western North Pacific. J Clim 15:1643–1658CrossRefGoogle Scholar
  67. Wang C, Li C, Mu M, Duan W (2013) Seasonal modulations of different impacts of two types of ENSO events on tropical cyclone activity in the western North Pacific. Clim Dyn 40:2887–2902CrossRefGoogle Scholar
  68. Webster PJ, Holland GJ, Curry JA, Chang H-R (2005) Changes in tropical cyclone number, duration, and intensity in a warming environment. Science 309(5742):1844–1846CrossRefGoogle Scholar
  69. Weng H, Ashok K, Behera SK, Rao SA, Yamagata T (2007) Impacts of recent El Niño Modoki on dry/wet conditions in the Pacific rim during boreal summer. Clim Dyn 29(2):113–129CrossRefGoogle Scholar
  70. Wu L, Zhao H (2012) Dynamically derived tropical cycloneintensity changes over the Western North Pacific. J Clim 25(1):89–98CrossRefGoogle Scholar
  71. Yeh S-W, Kug J-S, Dewitte B, Kwon M-H, Kirtman BP, Jin F-F (2009) El Niño in a changing climate. Nature 461(7263):511–514CrossRefGoogle Scholar
  72. Zhang W, Graf H, Leung Y, Herzog M (2012) Different El Niño types and tropical cyclone landfall in East Asia. J Clim 25(19):6510–6523CrossRefGoogle Scholar
  73. Zhang W, Leung Y, Min J-Z (2013) North Pacific gyre oscillation and the occurrence of western North Pacific tropical cyclones. Geophys Res Lett 40(19):5205–5211CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  1. 1.Earth System Modeling Center (ESMC) and Climate Dynamics Research Center, Nanjing International Academy of Meteorological Sciences (NIAMS), Key Laboratory of Meteorological Disaster, Ministry of Education and Collaborative Innovation Center on Forecast and Evaluation of Meteorological DisastersNanjing University of Information Science and TechnologyNanjingChina
  2. 2.Department of Geography and Resource ManagementThe Chinese University of Hong KongShatinChina
  3. 3.Institute of Future CitiesThe Chinese University of Hong KongShatinChina
  4. 4.Climate Change and Sustainability Laboratory, Shenzhen Research InstituteThe Chinese University of Hong KongShenzhenChina
  5. 5.Max Planck Institute for MeteorologyHamburgGermany

Personalised recommendations