Advertisement

Climate Dynamics

, Volume 45, Issue 5–6, pp 1601–1616 | Cite as

Changes of western European heat wave characteristics projected by the CMIP5 ensemble

  • Robert SchoetterEmail author
  • Julien Cattiaux
  • Hervé Douville
Article

Abstract

We investigate heat waves defined as periods of at least 3 consecutive days of extremely high daily maximum temperature affecting at least 30 % of western Europe. This definition has been chosen to select heat waves that might impact western European electricity supply. Even though not all such heat waves threaten it, the definition allows to identify a sufficient number of events, the strongest being potentially harmful. The heat waves are characterised by their duration, spatial extent, intensity and severity. The heat wave characteristics are calculated for historical and future climate based on results of climate model simulations conducted during the 5th Phase of the Coupled Model Intercomparison Project (CMIP5). The uncertainty of future anthropogenic forcing is taken into account by analysing results for the Representative Concentration Pathway scenarios RCP2.6, RCP4.5 and RCP8.5. The historical simulations are evaluated against the EOBS gridded station data. The CMIP5 ensemble median captures well the observed mean heat wave characteristics. However, no model simulates a heat wave as severe as observed during August 2003. Under future climate conditions, the heat waves become more frequent and have higher mean duration, extent and intensity. The ensemble spread is larger than the scenario uncertainty. The shift of the temperature distribution is more important for the increase of the cumulative heat wave severity than the broadening of the temperature distribution. However, the broadening leads to an amplification of the cumulative heat wave severity by a factor of 1.7 for RCP4.5 and 1.5 for RCP8.5.

Keywords

Heat waves CMIP5 Climate projections Uncertainties Electricity supply 

Notes

Acknowledgments

The authors are grateful to modeling groups providing the CMIP5 dataset and thank S. Tyteca at CNRM-GAME for data handling. This work was supported by the Climate-KIC E3P and the FP7 EUCLIPSE projects. The ENSEMBLES data used in this work were funded by the EU FP6 Integrated Project ENSEMBLES (Contract 505539), whose support is gratefully acknowledged. Sylvie Parey (EDF), Julien Najac (EDF) and Pascal Yiou (LSCE) are acknowledged for helpful discussions on the definition of heat waves relevant for electricity supply. Two anonymous reviewers are acknowledged for their helpful comments.

References

  1. Barbosa SM, Scotto MG, Alonso AM (2011) Summarising changes in air temperature over Central Europe by quantile regression and clustering. Nat Hazards Earth Syst Sci 11(12):3227–3233. doi:  10.5194/nhess-11-3227-2011. http://www.nat-hazards-earth-syst-sci.net/11/3227/2011/
  2. Barriopedro D, Fischer EM, Luterbacher J, Trigo RM, García-Herrera R (2011) The hot summer of 2010: Redrawing the temperature record map of Europe. Science 332(6026):220–224. doi:  10.1126/science.1201224. http://www.sciencemag.org/content/332/6026/220.abstract. http://www.sciencemag.org/content/332/6026/220.full.pdf
  3. Beniston M (2004) The 2003 heat wave in Europe: A shape of things to come? An analysis based on Swiss climatological data and model simulations. Geophys Res Lett. doi: 10.1029/2003GL018857 Google Scholar
  4. Beniston M, Stephenson D, Christensen O, Ferro C, Frei C, Goyette S, Halsnaes K, Holt T, Jylhä K, Koffi B, Palutikof J, Scholl R, Semmler T, Woth K (2007) Future extreme events in European climate: an exploration of regional climate model projections. Clim Change 81(1):71–95. doi: 10.1007/s10584-006-9226-z CrossRefGoogle Scholar
  5. Burkett VR, Suarez AG, Bindi M, Conde C, Mukerji R, Prather MJ, Clair ALS, Yohe GW (2014) Point of departure. In: Field CB, Barros VR, Dokken DJ, Mach KJ, Mastrandrea MD, Bilir TE, Chatterjee M, Ebi KL, Estrada YO, Genova RC, Girma B, Kissel ES, Levy AN, MacCracken S, Mastrandrea PR, White LL (eds) Climate change 2014: impacts, adaptation, and vulnerability. Part A: global and sectoral aspects. Contribution of working group II to the fifth assessment report of the intergovernmental panel of climate change. Cambridge University Press, Cambridge, pp 169–194Google Scholar
  6. Cattiaux J, Douville H, Peings Y (2013) European temperatures in CMIP5: origins of present-day biases and future uncertainties. Clim Dyn 41(11–12):2889–2907. doi: 10.1007/s00382-013-1731-y CrossRefGoogle Scholar
  7. Christensen J, Carter T, Rummukainen M, Amanatidis G (2007) Evaluating the performance and utility of regional climate models: the PRUDENCE project. Clim Change 81(1):1–6. doi: 10.1007/s10584-006-9211-6 CrossRefGoogle Scholar
  8. Clark RT, Murphy JM, Brown SJ (2010) Do global warming targets limit heatwave risk. Geophys Res Lett. doi: 10.1029/2010GL043898 Google Scholar
  9. Coumou D, Rahmstorf S (2012) A decade of weather extremes. Nat Clim Change 2(7):491–496. doi: 10.1038/nclimate1452 Google Scholar
  10. Cowan T, Purich A, Perkins S, Pezza A, Boschat G, Sadler K (2014) More frequent, longer, and hotter heat waves for Australia in the twenty-first century. J Clim 27(15):5851–5871. doi: 10.1175/JCLI-D-14-00092.1 CrossRefGoogle Scholar
  11. Diffenbaugh NS, Pal JS, Giorgi F, Gao X (2007) Heat stress intensification in the Mediterranean climate change hotspot. Geophys Res Lett. doi: 10.1029/2007GL030000 Google Scholar
  12. Fischer EM, Schär C (2010) Consistent geographical patterns of changes in high-impact European heatwaves. Nat Geosci 3(6):398–403. doi: 10.1038/ngeo866 CrossRefGoogle Scholar
  13. Haylock MR, Hofstra N, Klok EJ, Jones PD, New M (2008) A European daily high-resolution gridded data set of surface temperature and precipitation for 1950–2006. J Geophys Res Atmos. doi: 10.1029/2008JD010201 Google Scholar
  14. Hewitt CD (2004) Ensembles-based predictions of climate changes and their impacts. Eos Trans Am Geophys Union 85(52):566–566. doi: 10.1029/2004EO520005 CrossRefGoogle Scholar
  15. Hirschi M, Seneviratne SI, Alexandrov V, Boberg F, Boroneant C, Christensen OB, Formayer H, Orlowsky B, Stepanek P (2011) Observational evidence for soil-moisture impact on hot extremes in southeastern Europe. Nat Geosci 4(1):17–21. doi: 10.1038/ngeo1032 CrossRefGoogle Scholar
  16. Hoffman ME, Feldman M (1981) Calculation of the thermal response of buildings by the total thermal time constant method. Build Environ 16(2):71–85. doi: 10.1016/0360-1323(81)90023-8. http://www.sciencedirect.com/science/article/pii/0360132381900238
  17. Jaeger EB, Seneviratne SI (2011) Impact of soil moisture-atmosphere coupling on European climate extremes and trends in a regional climate model. Clim Dyn 36(9–10):1919–1939. doi: 10.1007/s00382-010-0780-8 CrossRefGoogle Scholar
  18. Kenyon J, Hegerl GC (2008) Influence of modes of climate variability on global temperature extremes. J Clim 21(15):3872–3889. doi: 10.1175/2008JCLI2125.1 CrossRefGoogle Scholar
  19. Kharin V, Zwiers F, Zhang X, Wehner M (2013) Changes in temperature and precipitation extremes in the CMIP5 ensemble. Clim Change 119(2):345–357. doi: 10.1007/s10584-013-0705-8 CrossRefGoogle Scholar
  20. Lau NC, Nath MJ (2014) Model simulation and projection of European heat waves in present-day and future climates. J Clim 27(10):3713–3730. doi: 10.1175/JCLI-D-13-00284.1 CrossRefGoogle Scholar
  21. Meehl GA, Tebaldi C (2004) More intense, more frequent, and longer lasting heat waves in the 21st century. Science 305(5686):994–997. doi: 10.1126/science.1098704. http://www.sciencemag.org/content/305/5686/994.abstract. http://www.sciencemag.org/content/305/5686/994.full.pdf
  22. Peings Y, Cattiaux J, Douville H (2013) Evaluation and response of winter cold spells over western Europe in CMIP5 models. Clim Dyn 41(11–12):3025–3037. doi: 10.1007/s00382-012-1565-z CrossRefGoogle Scholar
  23. Perkins SE, Alexander LV (2012) On the measurement of heat waves. J Clim 26(13):4500–4517. doi: 10.1175/JCLI-D-12-00383.1 CrossRefGoogle Scholar
  24. Quesada B, Vautard R, Yiou P, Hirschi M, Seneviratne SI (2012) Asymmetric European summer heat predictability from wet and dry southern winters and springs. Nat Clim Change 2(10):736–741. doi: 10.1038/nclimate1536 CrossRefGoogle Scholar
  25. Savić S, Selakov A, Milosević D (2014) Cold and warm air temperature spells during the winter and summer seasons and their impact on energy consumption in urban areas. Nat Hazards 70:1–15. doi: 10.1007/s11069-014-1074-y CrossRefGoogle Scholar
  26. Schär C, Vidale PL, Lüthi D, Frei C, Häberli C, Liniger MA, Appenzeller C (2004) The role of increasing temperature variability in European summer heatwaves. Nature 427(6972):332–336. doi: 10.1038/nature02300 CrossRefGoogle Scholar
  27. Schlünzen KH, Grawe D, Bohnenstengel SI, Schlüter I, Koppmann R (2011) Joint modelling of obstacle induced and mesoscale changes-current limits and challenges. J Wind Eng Ind Aerodyn 99(4):217–225. http://www.sciencedirect.com/science/article/pii/S0167610511000110
  28. Seneviratne SI, Lüthi D, Litschi M, Schär C (2006) Land-atmosphere coupling and climate change in Europe. Nature 443(7108):205–209. doi: 10.1038/nature05095 CrossRefGoogle Scholar
  29. Sillmann J, Kharin VV, Zwiers FW, Zhang X, Bronaugh D (2013) Climate extremes indices in the CMIP5 multimodel ensemble: Part 2. Future climate projections. J Geophys Res Atmos 118(6):2473–2493. doi: 10.1002/jgrd.50188 CrossRefGoogle Scholar
  30. Taylor KE, Stouffer RJ, Meehl GA (2011) An overview of CMIP5 and the experiment design. Bull Am Meteor Soc 93(4):485–498. doi: 10.1175/BAMS-D-11-00094.1 CrossRefGoogle Scholar
  31. Teuling AJ, Hirschi M, Ohmura A, Wild M, Reichstein M, Ciais P, Buchmann N, Ammann C, Montagnani L, Richardson AD, Wohlfahrt G, Seneviratne SI (2009) A regional perspective on trends in continental evaporation. Geophys Res Lett. doi: 10.1029/2008GL036584 Google Scholar
  32. Van Vliet MTH, Yearsley JR, Ludwig F, Vogele S, Lettenmaier DP, Kabat P (2012) Vulnerability of US and European electricity supply to climate change. Nat Clim Change 2(9):676–681. doi: 10.1038/nclimate1546 CrossRefGoogle Scholar
  33. Voldoire A, Sanchez-Gomez E, Salas y Mélia D, Decharme B, Cassou C, Sénési S, Valcke S, Beau I, Alias A, Chevallier M, Déqué M, Deshayes J, Douville H, Fernandez E, Madec G, Maisonnave E, Moine MP, Planton S, Saint-Martin D, Szopa S, Tyteca S, Alkama R, Belamari S, Braun A, Coquart L, Chauvin F (2013) The CNRM-CM51 global climate model description and basic evaluation. Clim Dyn 40(9–10):2091–2121. doi: 10.1007/s00382-011-1259-y CrossRefGoogle Scholar
  34. Van Vuuren D, Edmonds J, Kainuma M, Riahi K, Thomson A, Hibbard K, Hurtt G, Kram T, Krey V, Lamarque JF, Masui T, Meinshausen M, Nakicenovic N, Smith S, Rose S (2011) The representative concentration pathways: an overview. Clim Change 109(1–2):5–31. doi: 10.1007/s10584-011-0148-z CrossRefGoogle Scholar
  35. Weisheimer A, Palmer TN (2005) Changing frequency of occurrence of extreme seasonal temperatures under global warming. Geophys Res Lett. doi: 10.1029/2005GL023365 Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Robert Schoetter
    • 1
    Email author
  • Julien Cattiaux
    • 1
  • Hervé Douville
    • 1
  1. 1.CNRM-GAMEMétéo FranceToulouseFrance

Personalised recommendations