Climate Dynamics

, Volume 45, Issue 5–6, pp 1583–1599 | Cite as

El Niño–Southern Oscillation diversity and Southern Africa teleconnections during Austral Summer

  • Andrew Hoell
  • Chris Funk
  • Tamuka Magadzire
  • Jens Zinke
  • Greg Husak
Article

Abstract

A wide range of sea surface temperature (SST) expressions have been observed during the El Niño–Southern Oscillation events of 1950–2010, which have occurred simultaneously with different global atmospheric circulations. This study examines the atmospheric circulation and precipitation during December–March 1950–2010 over the African Continent south of 15\(^{\circ }\)S, a region hereafter known as Southern Africa, associated with eight tropical Pacific SST expressions characteristic of El Niño and La Niña events. The self-organizing map method along with a statistical distinguishability test was used to isolate the SST expressions of El Niño and La Niña. The seasonal precipitation forcing over Southern Africa associated with the eight SST expressions was investigated in terms of the horizontal winds, moisture budget and vertical motion. El Niño events, with warm SST across the east and central Pacific Ocean and warmer than average SST over the Indian Ocean, are associated with precipitation reductions over Southern Africa. The regional precipitation reductions are forced primarily by large-scale mid-tropospheric subsidence associated with anticyclonic circulation in the upper troposphere. El Niño events with cooler than average SST over the Indian Ocean are associated with precipitation increases over Southern Africa associated with lower tropospheric cyclonic circulation and mid-tropospheric ascent. La Niña events, with cool SST anomalies over the central Pacific and warm SST over the west Pacific and Indian Ocean, are associated with precipitation increases over Southern Africa. The regional precipitation increases are forced primarily by lower tropospheric cyclonic circulation, resulting in mid-tropospheric ascent and an increased flux of moisture into the region.

Keywords

ENSO Diversity El Niño La Niña Teleconnections Southern Africa 

References

  1. Ashok K, Behera SK, Rao SA, Weng H, Yamagata T (2007) El nino modoki and its possible teleconnection. J Geophys Res 112(C11):C11,007. doi:10.1029/2006JC003798 CrossRefGoogle Scholar
  2. Becker A, Finger P, Meyer-Christoffer A, Rudolf B, Schamm K, Schneider U, Ziese M (2013) A description of the global land-surface precipitation data products of the global precipitation climatology centre with sample applications including centennial (trend) analysis from 1901 present. Earth Syst Sci Data 5(1):71–99. doi:10.5194/essd-5-71-2013. http://www.earth-syst-sci-data.net/5/71/2013/
  3. Behera SK, Yamagata T (2001) Subtropical SST dipole events in the southern indian ocean. Geophys Res Lett 28(2):327–330. doi:10.1029/2000GL011451 CrossRefGoogle Scholar
  4. Behera SK, Salvekar PS, Yamagata T (2000) Simulation of interannual SST variability in the tropical indian ocean. J Clim 13(19):3487–3499. doi:10.1175/1520-0442(2000)013<3487:SOISVI>2.0.CO;2
  5. Behera SK, Luo JJ, Masson S, Delecluse P, Gualdi S, Navarra A, Yamagata T (2005) Paramount impact of the indian ocean dipole on the east african short rains: a CGCM study. J Clim 18(21):4514–4530. doi:10.1175/JCLI3541.1 CrossRefGoogle Scholar
  6. Chambers DP, Tapley BD, Stewart RH (1999) Anomalous warming in the Indian Ocean coincident with El Nio. J Geophys Res Ocean 104(C2):3035–3047. doi:10.1029/1998JC900085 CrossRefGoogle Scholar
  7. Diaz HF, Hoerling MP, Eischeid JK (2001) ENSO variability, teleconnections and climate change. Int J Climatol 21(15):1845–1862. doi:10.1002/joc.631 CrossRefGoogle Scholar
  8. Gill AE (1980) Some simple solutions for heat-induced tropical circulation. Q J R Meteorol Soc 106(449):447–462. doi:10.1002/qj.49710644905 CrossRefGoogle Scholar
  9. Goddard L, Graham NE (1999) Importance of the indian ocean for simulating rainfall anomalies over eastern and southern africa. J Geophys Res Atmos 104(D16):19,099–19,116. doi:10.1029/1999JD900326
  10. Hoell A, Funk C (2013) The ENSO-related west pacific sea surface temperature gradient. J Clim 26(23):9545–9562. doi:10.1175/JCLI-D-12-00344.1 CrossRefGoogle Scholar
  11. Hoell A, Funk C, Barlow M (2013) The regional forcing of northern hemisphere drought during recent warm tropical west Pacific Ocean La Nia events. Clim Dyn 1–23. doi:10.1007/s00382-013-1799-4
  12. Johnson NC (2013) How many ENSO flavors can we distinguish?*. J Clim 26(13):4816–4827. doi:10.1175/JCLI-D-12-00649.1 CrossRefGoogle Scholar
  13. Jury M, Mc Queen C (1994) SOI and QBO signals in the african region. Theor Appl Climatol 50(1–2):103–115. doi:10.1007/BF00864907 CrossRefGoogle Scholar
  14. Kalnay E, Kanamitsu M, Kistler R, Collins W, Deaven D, Gandin L, Iredell M, Saha S, White G, Woollen J, Zhu Y, Leetmaa A, Reynolds R, Chelliah M, Ebisuzaki W, Higgins W, Janowiak J, Mo KC, Ropelewski C, Wang J, Jenne R, Joseph D (1996) The NCEP/NCAR 40-year reanalysis project. Bull Amer Meteor Soc 77(3):437–471. doi:10.1175/1520-0477(1996)077<0437:TNYRP>2.0.CO;2
  15. Kao HY, Yu JY (2009) Contrasting eastern-pacific and central-pacific types of ENSO. J Clim 22(3):615–632. doi:10.1175/2008JCLI2309.1 CrossRefGoogle Scholar
  16. Kug JS, Jin FF, An SI (2009) Two types of El Nio events: cold tongue El Nio and warm pool El Nio. J Clim 22(6):1499–1515. doi:10.1175/2008JCLI2624.1 CrossRefGoogle Scholar
  17. Kumar A, Hoerling MP (1997) Interpretation and implications of the observed interel nino variability. J Clim 10(1):83–91. doi:10.1175/1520-0442(1997) 010<0083:IAIOTO>2.0.CO;2
  18. Kumar A, Zhang Q, Peng P, Jha B (2005) SST-forced atmospheric variability in an atmospheric general circulation model. J Clim 18(19):3953–3967. doi:10.1175/JCLI3483.1 CrossRefGoogle Scholar
  19. Larkin NK, Harrison DE (2005) On the definition of El Nino and associated seasonal average US weather anomalies. Geophys Res Lett 32(13):L13,705. doi:10.1029/2005GL022738 CrossRefGoogle Scholar
  20. Lindesay JA (1988) South African rainfall, the Southern Oscillation and a Southern Hemisphere semi-annual cycle. J Climatol 8(1):17–30. doi:10.1002/joc.3370080103 CrossRefGoogle Scholar
  21. Lindzen RS, Nigam S (1987) On the role of sea surface temperature gradients in forcing low-level winds and convergence in the tropics. J Atmos Sci 44(17):2418–2436. doi:10.1175/1520-0469(1987)044<2418:OTROSS>2.0.CO;2
  22. Matsuno T (1966) Quasi-geostrophic motions in the equatorial area. J Meteorol Soc Jpn Ser II 44(1):25–43Google Scholar
  23. Neukom R, Nash D, Endfield G, Grab S, Grove C, Kelso C, Vogel C, Zinke J (2014) Multi-proxy summer and winter precipitation reconstruction for southern Africa over the last 200 years. Clim Dyn 42(9–10):2713–2726. doi:10.1007/s00382-013-1886-6 CrossRefGoogle Scholar
  24. Newman M, Shin SI, Alexander MA (2011) Natural variation in ENSO flavors. Geophys Res Lett 38(14):L14,705. doi:10.1029/2011GL047658 CrossRefGoogle Scholar
  25. Nicholson S, Entekhabi D (1986) The quasi-periodic behavior of rainfall variability in africa and its relationship to the southern oscillation. Arch Meteorol Geophys Bioclimatol Ser A 34(3–4):311–348. doi:10.1007/BF02257765 CrossRefGoogle Scholar
  26. Nicholson SE (1997) An analysis of the ENSO signal in the tropical Atlantic and western Indian oceans. Int J Climatol 17(4):345–375. doi:10.1002/(SICI)1097-0088(19970330)17:4<345:AID-JOC127>3.0.CO;2-3
  27. Nicholson SE, Kim J (1997) The relationship of the el nino-southern oscillation to african rainfall. Int J Climatol 17(2):117–135. doi:10.1002/(SICI)1097-0088(199702)17:2<117:AID-JOC84>3.0.CO;2-O
  28. Rasmusson EM, Carpenter TH (1982) Variations in tropical sea surface temperature and surface wind fields associated with the Southern Oscillation/El Nino. Mon Wea Rev 110(5), 354–384. doi:10.1175/1520-0493(1982)110<0354:VITSST>2.0.CO;2
  29. Ratnam JV, Behera SK, Masumoto Y, Yamagata T (2014) Remote effects of El Nio and Modoki events on the austral summer precipitation of Southern Africa. J Clim 27(10):3802–3815. doi:10.1175/JCLI-D-13-00431.1 CrossRefGoogle Scholar
  30. Reason C, Allan R, Lindesay J, Ansell T (2000) ENSO and climatic signals across the indian ocean basin in the global context: part I, interannual composite patterns. Int J Climatol 20(11):1285–1327. doi:10.1002/1097-0088(200009)20:11<1285:AID-JOC536>3.0.CO;2-R
  31. Reason CJC (2001) Subtropical Indian ocean SST dipole events and Southern African rainfall. Geophys Res Lett 28(11):2225–2227. doi:10.1029/2000GL012735 CrossRefGoogle Scholar
  32. Reason CJC, Jagadheesha D (2005) A model investigation of recent ENSO impacts over Southern Africa. Meteorol Atmos Phys 89(1–4):181–205. doi:10.1007/s00703-005-0128-9 CrossRefGoogle Scholar
  33. Rienecker MM, Suarez MJ, Gelaro R, Todling R, Bacmeister J, Liu E, Bosilovich MG, Schubert SD, Takacs L, Kim GK, Bloom S, Chen J, Collins D, Conaty A, da Silva A, Gu W, Joiner J, Koster RD, Lucchesi R, Molod A, Owens T, Pawson S, Pegion P, Redder CR, Reichle R, Robertson FR, Ruddick AG, Sienkiewicz M, Woollen J (2011) MERRA: NASAs modern-era retrospective analysis for research and applications. J Clim 24(14):3624–3648. doi:10.1175/JCLI-D-11-00015.1 CrossRefGoogle Scholar
  34. Rocha A, Simmonds I (1997) South-eastern African summer rainfall. Part 1: relationships with air sea interaction processes. Int J Climatol 17(3):235–265. doi:10.1002/(SICI)1097-0088(19970315)17:3<235:AID-JOC123>3.0.CO;2-N
  35. Ropelewski CF, Halpert MS (1987) Global and regional scale precipitation patterns associated with the el nino/southern oscillation. Mon Wea Rev 115(8):1606–1626. doi:10.1175/1520-0493(1987)115<1606:GARSPP>2.0.CO;2
  36. Ropelewski CF, Halpert MS (1989) Precipitation patterns associated with the high index phase of the southern oscillation. J Clim 2(3):268–284. doi:10.1175/1520-0442(1989)002<0268:PPAWTH>2.0.CO;2
  37. Saji NH, Goswami BN, Vinayachandran PN, Yamagata T (1999) A dipole mode in the tropical indian ocean. Nature 401(6751):360–363Google Scholar
  38. Smith TM, Reynolds RW, Peterson TC, Lawrimore J (2008) Improvements to NOAAs historical merged land–ocean surface temperature analysis (1880–2006). J Clim 21(10):2283–2296. doi:10.1175/2007JCLI2100.1 CrossRefGoogle Scholar
  39. Trenberth KE, Smith L (2009) Variations in the three-dimensional structure of the atmospheric circulation with different flavors of El Nino. J Clim 22(11):2978–2991. doi:10.1175/2008JCLI2691.1 CrossRefGoogle Scholar
  40. Trenberth KE, Branstator GW, Karoly D, Kumar A, Lau NC, Ropelewski C (1998) Progress during TOGA in understanding and modeling global teleconnections associated with tropical sea surface temperatures. J Geophys Res 103(C7):14,291–14,324. doi:10.1029/97JC01444
  41. Vera C, Silvestri G, Barros V, Carril A (2004) Differences in el nino response over the southern hemisphere. J Clim 17(9):1741–1753. doi:10.1175/1520-0442(2004)017<1741:DIENRO>2.0.CO;2
  42. Webster PJ, Moore AM, Loschnigg JP, Leben RR (1999) Coupled ocean–atmosphere dynamics in the Indian Ocean during 1997–1998. Nature 401(6751):356–360. doi:10.1038/43848 CrossRefGoogle Scholar
  43. Wyrtki K (1975) El Nino-the dynamic response of the equatorial Pacific oceanto atmospheric forcing. J Phys Oceanogr 5(4):572–584. doi:10.1175/1520-0485(1975)005<0572:ENTDRO>2.0.CO;2
  44. Yeh SW, Kirtman BP, Kug JS, Park W, Latif M (2011) Natural variability of the central Pacific El Nio event on multi-centennial timescales. Geophys Res Lett 38(2):L02,704. doi:10.1029/2010GL045886 CrossRefGoogle Scholar
  45. Yeh SW, Ham YG, Lee JY (2012) Changes in the tropical pacific SST trend from CMIP3 to CMIP5 and its implication of ENSO*. J Clim 25(21):7764–7771. doi:10.1175/JCLI-D-12-00304.1 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Andrew Hoell
    • 1
  • Chris Funk
    • 2
  • Tamuka Magadzire
    • 3
  • Jens Zinke
    • 4
  • Greg Husak
    • 1
  1. 1.Department of GeographyUniversity of California Santa BarbaraSanta BarbaraUSA
  2. 2.U.S. Geological Survey, Department of GeographyUniversity of California Santa BarbaraSanta BarbaraUSA
  3. 3.Famine Early Warning Systems NetworkGaboroneBostwana
  4. 4.University of Western AustraliaPerthAustralia

Personalised recommendations