Advertisement

Climate Dynamics

, Volume 44, Issue 5–6, pp 1645–1659 | Cite as

Reconstruction of the springtime East Asian Subtropical Jet and Western Pacific pattern from a millennial-length Taiwanese tree-ring chronology

  • W. E. Wright
  • B. T. Guan
  • Y.-H. Tseng
  • E. R. Cook
  • K.-Y. Wei
  • S.-T. Chang
Article

Abstract

The East Asian subtropical jet (EAJ) and the closely related Western Pacific pattern (WP) are among the most important features in global atmospheric dynamics, but little is known about their long-term variability. This study presents reconstructions of the Spring EAJ index (EAJI) and the Spring WP index (WPI) based on significant relationships identified between mean values for these features and a millennial length tree-ring width chronology of Chamaecyparis obtusa var. formosana, a high-mountain cloud forest species from northeastern Taiwan. Tree-ring based reconstructions of high pass filtered versions of the EAJI and WPI (EAJI 5YR and WPI 5YR) presented herein explain 42 and 31 % of the WPI 5YR and EAJI 5YR, respectively, and display acceptable reliability back to A.D. 1237. A significant trend present in the long-term variance of the reconstructed EAJI and WPI after A.D. 1860 suggests long-term increasing variability in the spring mean latitudinal placement and/or the strength/breadth of the EAJ core region near Taiwan and Japan and in the trajectory of the EAJ over the North Pacific. Related features affected by changes in the EAJ include the North Pacific storm track and Asian Dust transport.

Keywords

Tree-ring Cloud forest East Asian Subtropical jet Western Pacific pattern North Pacific storm track Temperature 

Notes

Acknowledgments

Our thanks to Mr. C.-L. Lin and the personnel of the Taiwan Forest Conservation Agency, also to C–S. Kang, Y.-H. Lan, S.-K. Huang, L.-S. Chiang, P.-Y. Chen, T.-T. Chen, C.-W. Yiu, and S.-W. Hsu for their assistance in the field and in the lab. Many of the figures were modified from images produced on the KNMI (Royal Netherlands Meteorological Institute) website (http://climexp.knmi.nl). Support for the Twentieth Century Reanalysis Project dataset is provided by the US Department of Energy, Office of Science Innovative and Novel Computational Impact on Theory and Experiment (DOE INCITE) program, and Office of Biological and Environmental Research (BER), and by the National Oceanic and Atmospheric Administration Climate Program Office. This research was partially funded by NSC Grant Numbers NSC 97-2627-M-002-023 and NSC 98-2627-M-002-011, and by the NSF Paleoclimate program, award ATM 04-02474.

Supplementary material

382_2014_2402_MOESM1_ESM.docx (639 kb)
Supplementary material 1 (DOCX 638 kb)

References

  1. Alibert C, Kinsley L (2008) A 170-year Sr/Ca and Ba/Ca coral record from the western Pacific warm pool: 1. What can we learn from an unusual coral record? J Geophys Res Ocean 113(C4):C04008. doi: 10.1029/2006jc003979
  2. Apipattanavis S, McCabe GJ, Rajagopalan B, Gangopadhyay S (2009) Joint spatiotemporal variability of global sea surface temperatures and global palmer drought severity index values. J Clim 22(23):6251–6267CrossRefGoogle Scholar
  3. Barnston AG, Livezey RE (1987) Classification, seasonality and persistence of low-frequency atmospheric circulation patterns. Mon Weather Rev 115(6):1083–1126CrossRefGoogle Scholar
  4. Berryman AA, Stenseth NC, Isaev AS (1987) Natural regulation of herbivorous forest insect populations. Oecologia 71(2):174–184. doi: 10.1007/bf00377282 CrossRefGoogle Scholar
  5. Bruijnzeel LA, Veneklaas EJ (1998) Climatic conditions and tropical, montane forest productivity: the fog has not lifted yet. Ecology 79(1):3–9CrossRefGoogle Scholar
  6. Buckley BM, Cook BI, Bhattacharyya A, Dukpa D, Chaudhary V (2005) Global surface temperature signals in pine ring-width chronologies from southern monsoon Asia. Geophys Res Lett 32(20):L20704. doi: 10.1029/2005gl023745 CrossRefGoogle Scholar
  7. Buckley BM, Duangsathaporn K, Palakit K, Butler S, Syhapanya V, Xaybouangeun N (2007) Analyses of growth rings of Pinus merkusii from Lao PDR. For Ecol Manage 253(1–3):120–127CrossRefGoogle Scholar
  8. Buckley BM, Anchukaitis KJ, Penny D, Fletcher R, Cook ER, Sano M, Le CN, Wichienkeeo A, Ton TM, Truong MH (2010) Climate as a contributing factor in the demise of Angkor, Cambodia. Proc Natl Acad Sci USA 107(15):6748–6752CrossRefGoogle Scholar
  9. Chang SC, Yeh CF, Wu MJ, Hsia YJ, Wu JT (2006) Quantifying fog water deposition by in situ exposure experiments in a mountainous coniferous forest in Taiwan. For Ecol Manage 224(1–2):11–18. doi: 10.1016/j.foreco.2005.12.004 CrossRefGoogle Scholar
  10. Charles CD, Cobb KM, Moore MD, Fairbanks RG (2003) Monsoon-tropical ocean interaction in a network of coral records spanning the 20th century. Mar Geol 201(1–3):207–222. doi: 10.1016/s0025-3227(03)00217-2 CrossRefGoogle Scholar
  11. Chiang JCH, Fang Y (2010) Was the North Pacific Wintertime climate less stormy during the mid-holocene? J Clim 23(14):4025–4037. doi: 10.1175/2010jcli3510.1 CrossRefGoogle Scholar
  12. Chu H-S, Chang S-C, Klemm O, Lai C-W, Lin Y-Z, Wu C-C, Lin J-Y, Jiang J-Y, Chen J, Gottgens JF, Hsia Y-J (2014) Does canopy wetness matter? Evapotranspiration from a subtropical montane cloud forest in Taiwan. Hydrol Process 28(3):1190–1214. doi: 10.1002/hyp.9662 CrossRefGoogle Scholar
  13. Cleveland WS, Devlin SJ (1988) Locally weighted regression: an approach to regression analysis by local fitting. J Am Stat Assoc 83(403):596–610CrossRefGoogle Scholar
  14. Compo GP, Whitaker JS, Sardeshmukh PD, Matsui N, Allan RJ, Yin X, Gleason BE Jr, Vose RS, Rutledge G, Bessemoulin P, Broennimann S, Brunet M, Crouthamel RI, Grant AN, Groisman PY, Jones PD, Kruk MC, Kruger AC, Marshall GJ, Maugeri M, Mok HY, Nordli O, Ross TF, Trigo RM, Wang XL, Woodruff SD, Worley SJ (2011) The twentieth century reanalysis project. Q J R Meteorol Soc 137(654):1–28. doi: 10.1002/qj.776 CrossRefGoogle Scholar
  15. Cook ER (1985) A time series analysis approach to tree ring standardization. The University of Arizona, TucsonGoogle Scholar
  16. Cook ER, Peters K (1981) The smoothing spline: a new approach to standardizing forest interior tree-ring width series for dendro climatic studies. Tree-Ring Bull 41:45–53Google Scholar
  17. Cook ER, Peters K (1997) Calculating unbiased tree-ring indices for the study of climatic and environmental change. Holocene 7(3):361–370. doi: 10.1177/095968369700700314 CrossRefGoogle Scholar
  18. Cook ER, Briffa KR, Shiyatov S, Mazepa V (1990) Tree-ring standardization and growth-trend estimation. In: Cook ER, Kariukstis LA (eds) Methods of dendrochronology: applications in the environmental sciences. International institute for applied systems analysis. Kluwer, Boston, pp 104–123CrossRefGoogle Scholar
  19. Cook ER, Meko DM, Stahle DW, Cleaveland MK (1999) Drought reconstructions for the continental United States. J Clim 12(4):1145–1162CrossRefGoogle Scholar
  20. D’Arrigo R, Smerdon JE (2008) Tropical climate influences on drought variability over Java, Indonesia. Geophys Res Lett 35(5):L05707. doi: 10.1029/2007gl032589 Google Scholar
  21. D’Arrigo R, Villalba R, Wiles G (2001) Tree-ring estimates of Pacific decadal climate variability. Clim Dyn 18(3–4):219–224. doi: 10.1007/s003820100177 CrossRefGoogle Scholar
  22. D’Arrigo R, Allan R, Wilson R, Palmer J, Sakulich J, Smerdon JE, Bijaksana S, Ngkoimani LO (2008) Pacific and Indian Ocean climate signals in a tree-ring record of Java monsoon drought. Int J Climatol 28(14):1889–1901. doi: 10.1002/joc.1679 CrossRefGoogle Scholar
  23. D’Arrigo R, Wilson R, Tudhope A (2009) The impact of volcanic forcing on tropical temperatures during the past four centuries. Nat Geosci 2(1):51–56. doi: 10.1038/ngeo393 CrossRefGoogle Scholar
  24. D’Arrigo R, Palmer J, Ummenhofer CC, Kyaw NN, Krusic P (2011) Three centuries of Myanmar monsoon climate variability inferred from teak tree rings. Geophys Res Lett 38:L24705. doi: 10.1029/2011gl049927 Google Scholar
  25. Dawdy DR, Matalas NC (1964) Statistical and probability analysis of hydrologic data, part III: analysis of variance, covariance and time series. In: Chow VT (ed) Handbook of applied hydrology, a compendium of water-resources technology. McGraw-Hill Book Company, New York, pp 8.68–68.90Google Scholar
  26. Farjon A (2010) Handbook of the world’s conifers, vol 1. Brill Academic Publishers, Leiden, pp 1–1111. doi: 10.1163/9789047430629
  27. Fritts HC (1976) Tree rings and climate. Academic Press, LondonGoogle Scholar
  28. Ghil M, Allen MR, Dettinger MD, Ide K, Kondrashov D, Mann ME, Robertson AW, Saunders A, Tian Y, Varadi F, Yiou P (2002) Advanced spectral methods for climatic time series. Rev Geophys 40(1):3-1-41Google Scholar
  29. Gong SL, Zhang XY, Zhao TL, Zhang XB, Barrie LA, McKendry IG, Zhao CS (2006) A simulated climatology of Asian dust aerosol and its trans-Pacific transport. Part II: interannual variability and climate connections. J Clim 19:104–122CrossRefGoogle Scholar
  30. Gong DY, Mao R, Shi PJ, Fan YD (2007) Correlation between East Asian dust storm frequency and PNA. Geophys Res Lett 34(14). doi: 10.1029/2007gl029944
  31. Grant AN, Bronnimann S, Ewen T, Nagurny A (2009) A new look at radiosonde data prior to 1958. J Clim 22(12):3232–3247CrossRefGoogle Scholar
  32. Hamed KH, Rao AR (1998) A modified Mann–Kendall trend test for autocorrelated data. J Hydrol 204(1–4):182–196. doi: 10.1016/s0022-1694(97)00125-x CrossRefGoogle Scholar
  33. Holmes RL (1983) Computer-assisted quality control in tree-ring dating and measurement. Tree-Ring Bull 43:69–78Google Scholar
  34. Hu C, Henderson GM, Huang J, Chen Z, Johnson KR (2008) Report of a three-year monitoring programme at Heshang Cave, Central China. Int J Speleol 37(3):143–151CrossRefGoogle Scholar
  35. Huang T-C (ed) (1994) Flora of Taiwan, second edition, vol 1. Editorial Committee of the Flora of Taiwan, TaipeiGoogle Scholar
  36. Ise T, Moorcroft PR (2008) Quantifying local factors in medium-frequency trends of tree ring records: case study in Canadian boreal forests. For Ecol Manage 256(1–2):99–105. doi: 10.1016/j.foreco.2008.04.007 CrossRefGoogle Scholar
  37. Ishii H, Ohsugi Y (2011) Light acclimation potential and carry-over effects vary among three evergreen tree species with contrasting patterns of leaf emergence and maturation. Tree Physiol 31(8):819–830. doi: 10.1093/treephys/tpr079
  38. Jhun JG, Lee EJ (2004) A new East Asian winter monsoon index and associated characteristics of the winter monsoon. J Clim 17(4):711–726CrossRefGoogle Scholar
  39. Kalnay E et al (1996) The NCEP/NCAR 40-year reanalysis project. Bull Am Meteorol Soc 77:437–471CrossRefGoogle Scholar
  40. Kistler R, Kalnay E, Collins W, Saha S, White G, Woollen J, Chelliah M, Ebisuzaki W, Kanamitsu M, Kousky V, van den Dool H, Jenne R, Fiorino M (2001) The NCEP-NCAR 50-year reanalysis: monthly means CD-ROM and documentation. Bull Am Meteorol Soc 82(2):247–267CrossRefGoogle Scholar
  41. Lai IL, Scharr H, Chavarria-Krauser A, Kusters R, Wu JT, Chou CH, Schurr U, Walter A (2005) Leaf growth dynamics of two congener gymnosperm tree species reflect the heterogeneity of light intensities given in their natural ecological niche. Plant, Cell Environ 28(12):1496–1505CrossRefGoogle Scholar
  42. Lai I-L, Chang S-C, Lin P-H, Chou C-H, Wu J-T (2006) Climatic characteristics of the subtropical mountainous cloud forest at Yuanyang Lake long-term ecological research site, Taiwan. Taiwania 51(4):317–329Google Scholar
  43. Lau N-C (1988) Variability of the observed midlatitude storm tracks in relation to low frequency changes in the circulation pattern. J Atmos Sci 45(19):2718–2743CrossRefGoogle Scholar
  44. Lee YY, Lim GH, Kug JS (2010) Influence of the East Asian winter monsoon on the storm track activity over the North Pacific. J Geophys Res Atmos 115. doi: 10.1029/2009jd012813
  45. Letts MG, Mulligan M (2005) The impact of light quality and leaf wetness on photosynthesis in north-west Andean tropical montane cloud forest. J Trop Ecol 21:549–557. doi: 10.1017/s0266467405002488 CrossRefGoogle Scholar
  46. Lewis JM (2003) Ooishi’s observation—viewed in the context of jet stream discovery. Bull Am Meteorol Soc 84(3):357–369. doi: 10.1175/bams-84-3-357 CrossRefGoogle Scholar
  47. Linkin ME, Nigam S (2008) The north pacific oscillation-west Pacific teleconnection pattern: mature-phase structure and winter impacts. J Clim 21(9):1979–1997CrossRefGoogle Scholar
  48. Lu J, Vecchi GA, Reichler T (2007) Expansion of the Hadley cell under global warming (vol 34, art no L06805, 2007). Geophys Res Lett 34(14):L14808. doi: 10.1029/2007gl030931 CrossRefGoogle Scholar
  49. Mann ME, Lee J (1996) Robust estimation of background noise and signal detection in climatic time series. Clim Change 33:409–445CrossRefGoogle Scholar
  50. Meko DM, Graybill DA (1995) Tree-ring reconstruction of Upper Gila River discharge. Water Resour Bull 31:605–616CrossRefGoogle Scholar
  51. Mildenberger K, Beiderwieden E, Hsia YJ, Klemm O (2009) CO2 and water vapor fluxes above a subtropical mountain cloud forest—the effect of light conditions and fog. Agric For Meteorol 149(10):1730–1736CrossRefGoogle Scholar
  52. Mitchell TD, Jones PD (2005) An improved method of constructing a database of monthly climate observations and associated high-resolution grids. Int J Climatol 25(6):693–712CrossRefGoogle Scholar
  53. Miyamoto K, Okuda S, Inagaki Y, Noguchi M, Itou T (2013) Within- and between-site variations in leaf longevity in hinoki cypress (Chamaecyparis obtusa) plantations in southwestern Japan. J For Res 18(3):256-269. doi: 10.1007/s10310-012-0346-1
  54. Moore GWK (2013) Tibetan ice core evidence for an intensification of the East Asian jet stream since the 1870s. Atmos Sci Lett 14(4):235–242. doi:Google Scholar
  55. Nakamura H (1992) Midwinter suppression of baroclinic wave activity in the Pacific. J Atmos Sci 49(17):1629–1642CrossRefGoogle Scholar
  56. Nigam S, Pyle J, Curry JA (2003) Teleconnections. Encyclopedia of atmospheric sciences. Academic Press, LondonGoogle Scholar
  57. Park JS, Jhun JG, Kwon M (2010) Prominent features of large-scale atmospheric circulation during spring droughts over northeast Asia. Int J Climatol 30(8):1206–1214CrossRefGoogle Scholar
  58. Phipps RL (1982) Comments on interpretation of climatic information from tree rings, Eastern North America. Tree Ring Res 42:11–22Google Scholar
  59. Pinheiro JC, Bates DM (2000) Mixed-effects models in S and S-plus. Statistics and computing. Springer, New YorkCrossRefGoogle Scholar
  60. Pumijumnong N, Eckstein D (2011) Reconstruction of pre-monsoon weather conditions in northwestern Thailand from the tree-ring widths of Pinus merkusii and Pinus kesiya. Trees-Struct Funct 25(1):125–132. doi: 10.1007/s00468-010-0528-4 CrossRefGoogle Scholar
  61. Pumijumnong N, Eckstein D, Sass U (1995) Tree-ring research on Tectona grandis on northern Thailand. Iawa J 16(4):385–392CrossRefGoogle Scholar
  62. Riviere G (2010) Role of Rossby wave breaking in the west Pacific teleconnection. Geophys Res Lett 37:L11802. doi: 10.1029/2010GL043309
  63. Sano M, Buckley BM, Sweda T (2009) Tree-ring based hydroclimate reconstruction over northern Vietnam from Fokienia hodginsii: eighteenth century mega-drought and tropical Pacific influence. Clim Dyn 33(2–3):331–340. doi: 10.1007/s00382-008-0454-y CrossRefGoogle Scholar
  64. Seager R, Harnik N, Kushnir Y, Robinson W, Miller J (2003) Mechanisms of hemispherically symmetric climate variability. J Clim 16(18):2960–2978. doi: 10.1175/1520-0442(2003)016<2960:mohscv>2.0.co;2 CrossRefGoogle Scholar
  65. Seager R, Harnik N, Robinson WA, Kushnir Y, Ting M, Huang HP, Velez J (2005) Mechanisms of ENSO-forcing of hemispherically symmetric precipitation variability. Q J R Meteorol Soc 131(608):1501–1527. doi: 10.1256/qj.04.96 CrossRefGoogle Scholar
  66. Seidel DJ, Fu Q, Randel WJ, Reichler TJ (2008) Widening of the tropical belt in a changing climate. Nat Geosci 1(1):21–24. doi: 10.1038/ngeo.2007.38 Google Scholar
  67. Shi JF, Cook ER, Lu HY, Li JB, Wright WE, Li SF (2010) Tree-ring based winter temperature reconstruction for the lower reaches of the Yangtze River in southeast China. Clim Res 41:169–175CrossRefGoogle Scholar
  68. Stokes MA, Smiley TL (1968) An introduction to tree ring dating. University of Chicago Press, ChicagoGoogle Scholar
  69. Thomson DJ (1982) Spectrum estimation and harmonic-analysis. Proc IEEE 70(9):1055–1096. doi: 10.1109/proc.1982.12433 CrossRefGoogle Scholar
  70. Tudhope AW, Chilcott CP, McCulloch MT, Cook ER, Chappell J, Ellam RM, Lea DW, Lough JM, Shimmield GB (2001) Variability in the El Nino-Southern oscillation through a glacial-interglacial cycle. Science 291(5508):1511–1517. doi: 10.1126/science.1057969 CrossRefGoogle Scholar
  71. Urban FE, Cole JE, Overpeck JT (2000) Influence of mean climate change on climate variability from a 155-year tropical Pacific coral record. Nature 407(6807):989–993CrossRefGoogle Scholar
  72. Valladares F, Niinemets U (2008) Shade tolerance, a key plant feature of complex nature and consequences. Annu Rev Ecol Evol Syst 39:237–257CrossRefGoogle Scholar
  73. Wallace JM, Gutzler DS (1981) Teleconnections in the geopotential height field during the northern hemisphere winter. Mon Weather Rev 109(4):784–812CrossRefGoogle Scholar
  74. Wettstein JJ, Wallace JM (2010) Observed patterns of month-to-month storm-track variability and their relationship to the background flow. J Atmos Sci 67(5):1420–1437CrossRefGoogle Scholar
  75. Wigley TML, Briffa KR, Jones PD (1984) On the average value of correlated time series, with application in dendroclimatology and hydrometeorology. J Clim Appl Meteorol 23:201–213CrossRefGoogle Scholar
  76. Woollings T, Hoskins B, Blackburn M, Berrisford P (2008) A new Rossby wave-breaking interpretation of the North Atlantic Oscillation. J Atmos Sci 65(2):609–626CrossRefGoogle Scholar
  77. Wyka T, Robakowski P, Zytkowiak R (2008) Leaf age as a factor in anatomical and physiological acclimative responses of Taxus baccata L. needles to contrasting irradiance environments. Photosynth Res 95(1):87–99. doi: 10.1007/s11120-007-9238-1 CrossRefGoogle Scholar
  78. Yue S, Wang CY (2004) The Mann–Kendall test modified by effective sample size to detect trend in serially correlated hydrological series. Water Resour Manage 18(3):201–218. doi: 10.1023/b:warm.0000043140.61082.60 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • W. E. Wright
    • 1
  • B. T. Guan
    • 2
  • Y.-H. Tseng
    • 3
  • E. R. Cook
    • 4
  • K.-Y. Wei
    • 5
  • S.-T. Chang
    • 2
  1. 1.Laboratory of Tree-Ring ResearchThe University of ArizonaTucsonUSA
  2. 2.School of Forestry and Resource ConservationNational Taiwan UniversityTaipeiTaiwan
  3. 3.Earth System LaboratoryNational Center for Atmospheric ResearchBoulderUSA
  4. 4.Biology and PaleoenvironmentLamont–Doherty Earth ObservatoryPalisadesUSA
  5. 5.Department of GeoscienceNational Taiwan UniversityTaipeiTaiwan

Personalised recommendations