Climate Dynamics

, Volume 45, Issue 1–2, pp 185–211 | Cite as

Effect of horizontal resolution on ECHAM6-AMIP performance

  • Eileen HertwigEmail author
  • Jin-Song von Storch
  • Dörthe Handorf
  • Klaus Dethloff
  • Irina Fast
  • Thomas Krismer


This study analyzes the effect of increasing horizontal resolution in the atmospheric model ECHAM6 on the simulated mean climate state and climate variability. For that purpose three AMIP-style simulations with the resolutions T63L95, T127L95, and T255L95 are compared to reanalysis data and observations. Biases in atmospheric fields as well as tropospheric and stratospheric biases individually are analyzed. Besides mean errors of the climate state and the variance, some atmospheric phenomena with different time scales are studied at the three horizontal resolutions: the transient eddy kinetic energy, storm tracks, atmospheric teleconnections, the Madden–Julian-Oscillation (MJO), and the Quasi-Biennial Oscillation (QBO). The main result is that, overall, the bias of the simulated climate is reduced with increasing resolution when considering the mean state and the variance. A greater improvement takes place in the extra-tropical than in the tropical troposphere. The errors in the stratosphere are generally larger but the relative benefit of increasing resolution is greater than in the troposphere and we find that stratospheric phenomena, like the QBO, are sensitive to horizontal resolution. Globally, the bias of the mean state improves by 19 %, while the bias of the variability improves by 15 % (from T63 to T255). Major challenges remain the simulation of the precipitation and climate features like the MJO, which might require a coupled atmosphere–ocean model.


Zonal Wind Horizontal Resolution Storm Track Mixed Resolution Eddy Kinetic Energy 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



We thank Jürgen Bader for helpful comments on this manuscript. Monika Esch and Thorsten Mauritsen are acknowledged for their help with the simulations. This work was supported through the Cluster of Excellence ‘CliSAP’ (EXC177), University of Hamburg, funded through the German Science Foundation (DFG). Computing resources were provided by the German Climate Computing Center (DKRZ). The STORM AMIP simulation is part of the German STORM consortium project. It is acknowledged by various institutions inside Germany in general and by Max-Planck Institute for Meteorology, the CliSAP Cluster of Excellence of the University Hamburg, Institute of Coastal Research of the Helmholtz Zentrum Geesthacht, and Alfred Wegener Institute for Polar and Marine Research through their financial support in particular.


  1. Adler RF, Huffman GJ, Chang A, Ferraro R, Xie P-P, Janowiak J, Rudolf B, Schneider U, Curtis S, Bolvin D, Gruber A, Susskind J, Arkin P, Nelkin E (2003) The version-2 global precipitation climatology project (GPCP) monthly precipitation analysis (1979 present). J Hydrometeorol 4:1147CrossRefGoogle Scholar
  2. Anstey JA, Davini P, Gray LJ, Woollings TJ, Butchart N, Cagnazzo C, Christiansen B, Hardiman SC, Osprey SM, Yang S (2013) Multi-model analysis of northern hemisphere winter blocking: model biases and the role of resolution. J Geophys Res 118:3956–3971Google Scholar
  3. Athanasiadis PJ, Wallace JM, Wettstein JJ (2010) Patterns of wintertime jet stream variability and their relation to the storm tracks. J Atmos Sci 67:1361–1381CrossRefGoogle Scholar
  4. Bacmeister JT, Wehner MF, Neale RB, Gettelman A, Hannay C, Lauritzen PH, Caron JM, Truesdale JE (2014) Exploratory high-resolution climate simulations using the community atmosphere model (CAM). J Clim 27:3073–3099CrossRefGoogle Scholar
  5. Baldwin MP, Gray LJ, Dunkerton TJ, Hamilton K, Haynes PH, Randel WJ, Holton JR, Alexander MJ, Hirota I, Horinouchi T, Jones DBA, Kinnersley JS, Marquardt C, Sato K, Takahashi M (2001) The quasi-biennial oscillation. Rev Geophys 39:179–229CrossRefGoogle Scholar
  6. Benedict JJ, Lee S, Feldstein SB (2004) Synoptic view of the North Atlantic oscillation. J Atmos Sci 61:121–144CrossRefGoogle Scholar
  7. Berckmans J, Woollings T, Demory M-E, Vidale P-L, Roberts M (2013) Atmospheric blocking in a high resolution climate model: influences of mean state, orography and eddy forcing. Atmos Sci Lett 14:34–40CrossRefGoogle Scholar
  8. Berner J, Jung T, Palmer TN (2012) Systematic model error: the impact of increased horizontal resolution versus improved stochastic and deterministic parameterizations. J Clim 25:4946–4962CrossRefGoogle Scholar
  9. Blackmon ML, Lee YH, Wallace JM (1984) Horizontal structure of 500-mb height fluctuations with long, intermediate ans short-time scales. J Atmos Sci 41:961–979CrossRefGoogle Scholar
  10. Boville BA (1991) Sensitivity of simulated climate to model resolution. J Clim 4:469–486CrossRefGoogle Scholar
  11. Boyle J, Klein SA (2010) Impact of horizontal resolution on climate model forecasts of tropical precipitation and diabatic heating for the TWP-ICE period. J Geophys Res (Atmos) 115:23113CrossRefGoogle Scholar
  12. Boyle JS (1993) Sensitivity of dynamical quantities to horizontal resolution for a climate simulation using the ECMWF (cycle 33) model. J Clim 6:796–815CrossRefGoogle Scholar
  13. Branković C, Gregory D (2001) Impact of horizontal resolution on seasonal integrations. Clim Dyn 18(1–2):123–143Google Scholar
  14. Crueger T, Stevens B, Brokopf R (2013) The Madden–Julian oscillation in ECHAM6 and the introduction of an objective MJO metric. J Clim 26:3241–3257CrossRefGoogle Scholar
  15. Davini P, Cagnazzo C (2013) On the misinterpretation of the north atlantic oscillation in CMIP5 models. Clim DynGoogle Scholar
  16. Dawson A, Matthews A, Stevens D (2011) Rossby wave dynamics of the North Pacific extra-tropical response to El Ni no: importance of the basic state in coupled GCMs. Clim Dyn 37(1–2):391–405CrossRefGoogle Scholar
  17. Dee DP, Uppala SM, Simmons AJ, Berrisford P, Poli P, Kobayashi S, Andrae U, Balmaseda MA, Balsamo G, Bauer P, Bechtold P, Beljaars ACM, van de Berg L, Bidlot J, Bormann N, Delsol C, Dragani R, Fuentes M, Geer AJ, Haimberger L, Healy SB, Hersbach H, Hólm EV, Isaksen L, Kållberg P, Köhler M, Matricardi M, McNally AP, Monge-Sanz BM, Morcrette J-J, Park B-K, Peubey C, de Rosnay P, Tavolato C, Thépaut J-N, Vitart F (2011) The ERA-Interim reanalysis: configuration and performance of the data assimilation system. Q J R Meteorol Soc 137(656):553–597CrossRefGoogle Scholar
  18. Delcambre SC, Lorenz DJ, Vimont DJ, Martin JE (2013) Diagnosing northern hemisphere jet portrayal in 17 CMIP3 global climate models: twentieth-century intermodel variability. J Clim 26:4910–4929CrossRefGoogle Scholar
  19. Delworth TL, Rosati A, Anderson W, Adcroft AJ, Balaji V, Benson R, Dixon K, Griffies SM, Lee H-C, Pacanowski RC, Vecchi GA, Wittenberg AT, Zeng F, Zhang R (2012) Simulated climate and climate change in the GFDL CM2.5 high-resolution coupled climate model. J Clim 25:2755–2781CrossRefGoogle Scholar
  20. Demory M-E, Vidale P, Roberts M, Berrisford P, Strachan J, Schiemann R, Mizielinski M (2014) The role of horizontal resolution in simulating drivers of the global hydrological cycle. Clim Dyn 42(7–8):2201–2225CrossRefGoogle Scholar
  21. Déqué M, Piedelievre J (1995) High resolution climate simulation over Europe. Clim Dyn 11(6):321–339CrossRefGoogle Scholar
  22. Duffy PB, Govindasamy B, Iorio JP, Milovich J, Sperber KR, Taylor KE, Wehner MF, Thompson SL (2003) High-resolution simulations of global climate, part 1: present climate. Clim Dyn 21:371–390CrossRefGoogle Scholar
  23. Franzke C, Lee S, Feldstein SB (2004) Is the North Atlantic oscillation a breaking wave? J Atmos Sci 61:145–160CrossRefGoogle Scholar
  24. Franzke C, Woollings T, Martius O (2011) Persistent circulation regimes and preferred regime transitions in the North Atlantic. J Atmos Sci 68:2809–2825CrossRefGoogle Scholar
  25. Gates WL (1992) AMIP: the atmospheric model intercomparison project. Bull Am Meteorol Soc 73:1962–1970CrossRefGoogle Scholar
  26. Giorgetta MA, Manzini E, Roeckner E, Esch M, Bengtsson L (2006) Climatology and forcing of the quasi-biennial oscillation in the MAECHAM5 model. J Clim 19:3882CrossRefGoogle Scholar
  27. Handorf D, Dethloff K (2012) How well do state-of-the-art atmosphere–ocean general circulation models reproduce atmospheric teleconnection patterns? Tellus A 64:19777CrossRefGoogle Scholar
  28. Hannachi A, Jolliffe IT, Stephenson DB (2007) Empirical orthogonal functions and related techniques in atmospheric science: a review. Int J Climatol 27:1119–1152CrossRefGoogle Scholar
  29. Hines CO (1997a) Doppler-spread parameterization of gravity-wave momentum deposition in the middle atmosphere. part 1: basic formulation. J Atmos Sol-Terr Phys 59(4):371–386CrossRefGoogle Scholar
  30. Hines CO (1997b) Doppler-spread parameterization of gravity-wave momentum deposition in the middle atmosphere. Part 2: broad and quasi monochromatic spectra, and implementation. J Atmos Sol-Terr Phys 59(4):387–400CrossRefGoogle Scholar
  31. Jung T, Gulev SK, Rudeva I, Soloviov V (2006) Sensitivity of extratropical cyclone characteristics to horizontal resolution in the ECMWF model. Q J R Meteorol Soc 132:1839–1857CrossRefGoogle Scholar
  32. Jung T, Miller MJ, Palmer TN, Towers P, Wedi N, Achuthavarier D, Adams JM, Altshuler EL, Cash BA, Kinter JL III, Marx L, Stan C, Hodges KI (2012) High-resolution global climate simulations with the ECMWF model in Project Athena: experimental design, model climate, and seasonal forecast skill. J Clim 25:3155–3172CrossRefGoogle Scholar
  33. Kalnay E, Kanamitsu M, Kistler R, Collins W, Deaven D, Gandin L, Iredell M, Saha S, White G, Woollen J, Zhu Y, Leetmaa A, Reynolds B, Chelliah M, Ebisuzaki W, Higgins W, Janowiak J, Mo KC, Ropelewski C, Wang J, Jenne R, Joseph D (1996) The NCEP/NCAR 40-year reanalysis project. Bull Am Meteorol Soc 77:437–472CrossRefGoogle Scholar
  34. Kawatani Y, Watanabe S, Sato K, Dunkerton TJ, Miyahara S, Takahashi M (2010) The roles of equatorial trapped waves and internal inertia-gravity waves in driving the quasi-biennial oscillation. Part I: zonal mean wave forcing. J Atmos Sci 67:963–980CrossRefGoogle Scholar
  35. Kiehl JT, Williamson DL (1991) Dependence of cloud amount on horizontal resolution in the National Center for Atmospheric Research Community Climate Model. J Geophys Res 96:10955CrossRefGoogle Scholar
  36. Kirtman BP, Bitz C, Bryan F, Collins W, Dennis J, Hearn N, Kinter JL, Loft R, Rousset C, Siqueira L, Stan C, Tomas R, Vertenstein M (2012) Impact of ocean model resolution on CCSM climate simulations. Clim Dyn 39:1303–1328CrossRefGoogle Scholar
  37. Krismer T, Giorgetta MA, von Storch J-S, Fast I (2014) The influence of the spectral resolution on modelling the QBO. J Atmos Sci (submitted)Google Scholar
  38. Krismer TR, Giorgetta MA (2014) Wave forcing of the quasi-biennial oscillation in MPI-ESM. J Atmos Sci 71:985–2006Google Scholar
  39. Madden RA, Julian PR (1971) Detection of a 40–50 day oscillation in the zonal wind in the tropical Pacific. J Atmos Sci 28:702–708CrossRefGoogle Scholar
  40. Madden RA, Julian PR (1972) Description of global-scale circulation cells in the tropics with a 40–50 day period. J Atmos Sci 29:1109–1123CrossRefGoogle Scholar
  41. Mauritsen T, Stevens B, Roeckner E, Crueger T, Esch M, Giorgetta M. Haak H, Jungclaus J, Klocke D, Matei D, Mikolajewicz U, Notz D, Pincus R, Schmidt H, Tomassini L (2012) Tuning the climate of a global model. J Adv Model Earth Syst 4(3):M00A01(1–18)Google Scholar
  42. Mizielinski MS, Roberts MJ, Vidale PL, Schiemann R, Demory M-E, Strachan J, Edwards T, Stephens A, Lawrence BN, Pritchard M, Chiu P, Iwi A, Churchill J, Kettleborough J, Roseblade W, Selwood P, Foster M, Glover M, Malcolm A (2014) High resolution global climate modelling; the UPSCALE project, a large simulation campaign. Geosci Model Dev Discuss 7:563–591CrossRefGoogle Scholar
  43. Mizuta R, Yoshimura H, Murakami H (2012) Climate simulations using mri-agcm3.2 with 20-km grid (special issue on recent development on climate models and future climate projections). J Meteorol Soc Jpn 90:233–258CrossRefGoogle Scholar
  44. North GR, Bell TL, Cahalan RF, Moeng FJ (1982) Sampling errors in the estimation of empirical orthogonal functions. Mon Weather Rev 110:699CrossRefGoogle Scholar
  45. Palipane E, Lu J, Chen G, Kinter JLI (2013) Improved annular mode variability in a global atmospheric general circulation model with 16 km horizontal resolution. Geophys Res Lett 40:4893–4899CrossRefGoogle Scholar
  46. Phillips T, Corsetti L, Grotch S (1995) The impact of horizontal resolution on moist processes in the ECMWF model. Clim Dyn 11(2):85–102CrossRefGoogle Scholar
  47. Pope VD, Stratton RA (2002) The processes governing horizontal resolution sensitivity in a climate model. Clim Dyn 19:211–236CrossRefGoogle Scholar
  48. Preisendorfer R (1988) Principal component analysis in meteorology and oceanography (Developments in atmospheric science, vol. 17). Elsevier, AmsterdamGoogle Scholar
  49. Reichler T, Kim J (2008) How well do coupled models simulate today’s climate? Bull Am Meteorol Soc 89:303CrossRefGoogle Scholar
  50. Richman MB (1986) Rotation of principal components. J Climatol 6:293–335CrossRefGoogle Scholar
  51. Riviere G, Laine A, Lapeyre G, Salas-Melia D, Kageyama M (2010) Links between Rossby wave breaking and the North Atlantic oscillation–Arctic oscillation in present-day and Last Glacial Maximum climate simulations. J Clim 23:2987–3008CrossRefGoogle Scholar
  52. Roeckner E, Brokopf R, Esch M, Giorgetta M, Hagemann S, Kornblueh L, Manzini E, Schlese U, Schulzweida U (2006) Sensitivity of simulated climate to horizontal and vertical resolution in the ECHAM5 atmosphere model. J Clim 19:3771CrossRefGoogle Scholar
  53. Scaife AA, Butchart N, Warner CD, Stainforth D, Norton W, Austin J (2000) Realistic quasi-biennial oscillations in a simulation of the global climate. Geophys Res Lett 27:3481–3484CrossRefGoogle Scholar
  54. Schiemann R, Demory M-E, Mizielinski M, Roberts M, Shaffrey L, Strachan J, Vidale P (2014) The sensitivity of the tropical circulation and maritime continent precipitation to climate model resolution. Clim Dyn 42(9–10):2455–2468CrossRefGoogle Scholar
  55. Shaffrey LC, Stevens I, Norton WA, Roberts MJ, Vidale PL, Harle JD, Jrrar A, Stevens DP, Woodage MJ, Demory ME, Donners J, Clark DB, Clayton A, Cole JW, Wilson SS, Connolley WM, Davies TM, Iwi AM, Johns TC, King JC, New AL, Slingo JM, Slingo A, Steenman-Clark L, Martin GM (2009) U.K. HiGEM: the New U.K. high-resolution global environment model—model description and basic evaluation. J Clim 22:1861–1896CrossRefGoogle Scholar
  56. Sperber KR, Hameed S, Potter GL, Boyle JS (1994) Simulation of the northern summer monsoon in the ECMWF model: sensitivity to horizontal resolution. Mon Weather Rev 122:2461CrossRefGoogle Scholar
  57. Stevens B, Giorgetta M, Esch M, Mauritsen T, Crueger T, Rast S, Salzmann M, Schmidt H, Bader J, Block K, Brokopf R, Fast I, Kinne S, Kornblueh L, Lohmann U, Pincus R, Reichler T, Roeckner E (2013) Atmospheric component of the MPI-M earth system model: ECHAM6. J Adv Model Earth Syst 5(2):146–172CrossRefGoogle Scholar
  58. Strachan J, Vidale PL, Hodges K, Roberts M, Demory M-E (2013) Investigating global tropical cyclone activity with a hierarchy of AGCMs: the role of model resolution. J Clim 26:133–152CrossRefGoogle Scholar
  59. Stratton RA (1999) A high resolution AMIP integration using the Hadley Centre model HadAM2b. Clim Dyn 15:9–28CrossRefGoogle Scholar
  60. Taylor KE (2001) Summarizing multiple aspects of model performance in a single diagram. J Geophys Res 106:7183–7192CrossRefGoogle Scholar
  61. Tibaldi S, Palmer TN, Branković Č, Cubasch U (1990) Extended-range predictions with ECMWF models: influence of horizontal resolution on systematic error and forecast skill. Q J R Meteorol Soc 116:835–866CrossRefGoogle Scholar
  62. von Storch J-S (2004) On statistical dissipation in GCM-climate. Clim Dyn 23:1–15Google Scholar
  63. Waliser D, Sperber K, Hendon H, Kim D, Maloney E, Wheeler M, Weickmann K, Zhang C, Donner L, Gottschalck J, Higgins W, Kang I-S, Legler D, Moncrieff M, Schubert S, Stern W, Vitart F, Wang B, Wang W, Woolnough SJ (2009) MJO simulation diagnostics. J Clim 22(11):3006–3030 CLIVARMJCrossRefGoogle Scholar
  64. Wallace JM, Gutzler DS (1981) Teleconnections in the geopotential height field during the northern hemisphere winter. Mon Weather Rev 109:784–812CrossRefGoogle Scholar
  65. Watterson I, Bathols J, Heady C (2013) What influences the skill of climate models over the continents? Bull Am Meteorol Soc (in press)Google Scholar
  66. Williamson DL, Kiehl JT, Hack JJ (1995) Climate sensitivity of the NCAR community climate model (CCM2) to horizontal resolution. Clim Dyn 11:377–397CrossRefGoogle Scholar
  67. Woollings T, Hannachi A, Hoskins B (2010) Variability of the North Atlantic eddy-driven jet stream. Q J R Meteorol Soc 136:856–868CrossRefGoogle Scholar
  68. Woollings T, Hoskins B, Blackburn M, Berrisford P (2008) A new Rossby wave-breaking interpretation of the North Atlantic oscillation. J Atmos Sci 65:609–626CrossRefGoogle Scholar
  69. Xie P, Janowiak JE, Arkin PA, Adler R, Gruber A, Ferraro R, Huffman GJ, Curtis S (2003) GPCP pentad precipitation analyses: an experimental dataset based on gauge observations and satellite estimates. J Clim 16:2197–2214CrossRefGoogle Scholar
  70. Zappa G, Shaffrey LC, Hodges KI (2013) The ability of cmip5 models to simulate North Atlantic extratropical cyclones. J Clim 26(15):5379–5396CrossRefGoogle Scholar
  71. Zhang C (2005) Madden–Julian oscillation. Rev Geophys 43(RG2003):1–36CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Eileen Hertwig
    • 1
    Email author
  • Jin-Song von Storch
    • 1
  • Dörthe Handorf
    • 2
  • Klaus Dethloff
    • 2
  • Irina Fast
    • 3
  • Thomas Krismer
    • 1
  1. 1.Max Planck Institute for MeteorologyHamburgGermany
  2. 2.Alfred Wegener Institute for Polar and Marine ResearchPotsdamGermany
  3. 3.German Climate Computing CenterHamburgGermany

Personalised recommendations