Advertisement

Climate Dynamics

, Volume 44, Issue 11–12, pp 3043–3055 | Cite as

Teleconnections of the tropical Atlantic and Pacific Oceans in a CMIP5 model ensemble

  • Irena Ott
  • Karin Romberg
  • Jucundus Jacobeit
Article

Abstract

This study investigates the teleconnections between the tropical Atlantic and Pacific Oceans in 15 state-of-the-art fully coupled general circulation models and Earth system models without external SST forcing. In contrast to other studies, the teleconnection is considered in both directions—from the Pacific to the Atlantic and from the Atlantic to the Pacific. The model ensemble is generally able to simulate the propagation of atmospheric and oceanic signals to the adjacent ocean basin, generated by warm sea surface temperature (SST) anomalies in the tropical eastern oceans with Atlantic summer events lagging or leading Pacific boreal winter events. This is investigated by means of time-lagged composite analyses of different atmospheric parameters, including sea level pressure, wind, stream function, velocity potential, vertical air movement and divergent wind at several levels. However, the modelled inter-basin teleconnection and its correct frequency of occurrence depend on the strong warm SST biases in the Atlantic Benguela upwelling region and in the Pacific Ocean.

Keywords

Teleconnection Tropical Pacific Tropical Atlantic CMIP5 Model ensemble 

Notes

Acknowledgments

Financial support was provided by the DFG (German Research Foundation) under contract JA 831/9-1.

References

  1. Bauer DF (1972) Constructing confidence sets using rank statistics. J Am Stat Assoc 67:687–690CrossRefGoogle Scholar
  2. Bhaskaran B, Mullan A (2003) El Nino-related variations in the southern Pacific atmospheric circulation: model versus observations. Clim Dyn 20:229–239Google Scholar
  3. Carton JA, Huang B (1994) Warm events in the tropical Atlantic. J Phys Oceanogr 24:888–903CrossRefGoogle Scholar
  4. Chang P, Fang Y, Saravanan R, Ji L, Seidel H (2006) The cause of the fragile relationship between the Pacific El Niño and the Atlantic Niño. Nature 443:324–328CrossRefGoogle Scholar
  5. Compo GP, Whitaker JS, Sardeshmukh PD, Matsui N, Allan RJ, Yin X, Gleason BE, Vose RS, Rutledge G, Bessemoulin P, Brönnimann S, Brunet M, Crouthamel RI, Grant AN, Groisman PY, Jones PD, Kruk M, Kruger AC, Marshall GJ, Maugeri M, Mok HY, Nordli Ø, Ross TF, Trigo RM, Wang XL, Woodruff SD, Worley SJ (2011) The twentieth century reanalysis project. Q J R Meteorol Soc 137:1–28. doi: 10.1002/qj.776 CrossRefGoogle Scholar
  6. Delecluse P, Servain J, Levy C, Arpe K, Bengtsson L (1994) On the connection between the 1984 Atlantic warm event and the 1982–1983 ENSO. Tellus A 46:448–464CrossRefGoogle Scholar
  7. Ding H, Keenlyside NS, Latif M (2012) Impact of the equatorial Atlantic on the El Niño southern oscillation. Clim Dyn 38:1965–1972CrossRefGoogle Scholar
  8. Florenchie P, Reason C, Lutjeharms J, Rouault M, Roy C, Masson S (2004) Evolution of interannual warm and c old events in the southeast Atlantic Ocean. J Clim 17:2318–2334CrossRefGoogle Scholar
  9. Guilyardi E, Gualdi S, Slingo J, Navarra A, Delecluse P, Cole J, Madec G, Roberts M, Latif M, Terray L (2004) Representing El Niño in coupled ocean-atmosphere GCMs: the dominant role of the atmospheric component. J Clim 17:4623–4629CrossRefGoogle Scholar
  10. Hollander M, Wolfe D (1973) Nonparametric statistical methods. Wiley, New YorkGoogle Scholar
  11. Hong CC, Li T, Chen YC (2010) Asymmetry of the Indian Ocean Basinwide SST anomalies: roles of ENSO and IOD. J Clim 23:3563–3576CrossRefGoogle Scholar
  12. Keenlyside NS, Latif M (2007) Understanding equatorial Atlantic interannual variability. J Clim 20:131–142CrossRefGoogle Scholar
  13. Klein SA, Soden BJ, Lau NC (1999) Remote sea surface temperature variations during ENSO: evidence for a tropical atmospheric bridge. J Clim 12:917–932CrossRefGoogle Scholar
  14. Latif M, Grötzner A (2000) The equatorial Atlantic oscillation and its response to ENSO. Clim Dyn 16:213–218CrossRefGoogle Scholar
  15. Liu H, Wang C, Lee SK, Enfield D (2013) Atlantic warm pool variability in the CMIP5 simulations. J Clim 26:5315–5336CrossRefGoogle Scholar
  16. Losada T, Rodriguez-Fonseca B, Polo I, Janicot S, Gervois S, Chauvin F, Ruti P (2010) Tropical response to the Atlantic Equatorial mode: AGCM multimodel approach. Clim Dyn 35:45–52CrossRefGoogle Scholar
  17. Lübbecke JF, McPhaden MJ (2012) On the Inconsistent Relationship between Pacific and Atlantic Niños. J Clim 25:4294–4303CrossRefGoogle Scholar
  18. Lutz K, Rathmann J, Jacobeit J (2013) Classification of warm and cold water events in the eastern tropical Atlantic Ocean. Atmos Sci Lett 14:102–106CrossRefGoogle Scholar
  19. Rayner NA, Parker DE, Horton EB, Folland CK, Alexander LV, Rowell DP, Kent EC, Kaplan A (2003) Global analyses of sea surface temperature, sea ice, and night marine air temperature since the late nineteenth century. J Geophys Res 108(D14):4407. doi: 10.1029/2002JD002670
  20. Richman M (1986) Rotation of principal components. Int J Climatol 6:293–335CrossRefGoogle Scholar
  21. Richter I, Behera SK, Masumoto Y, Taguchi B, Sasaki H, Yamagata T (2012) Multiple causes of interannual sea surface temperature variability in the equatorial Atlantic Ocean. Nat Geosci 6:43–47Google Scholar
  22. Richter I, Xie SP, Behera S, Doi T, Masumoto Y (2014) Equatorial Atlantic variability and its relation to mean state biases in CMIP5. Clim Dyn 42:171–188CrossRefGoogle Scholar
  23. Rodriguez-Fonseca B, Polo I, Garcia-Serrano J, Losada T, Mohino E, Mechoso CR, Kucharski F (2009) Are Atlantic Niños enhancing Pacific ENSO events in recent decades? Geophys Res Lett 36:L20705. doi: 10.1029/2009GL040048
  24. Seager R, Harnik N, Kushnir Y, Robinson W, Miller J (2003) Mechanisms of hemispherically symmetric climate variability. J Clim 16:2960–2978CrossRefGoogle Scholar
  25. Smith TM, Reynolds RW, Peterson TC, Lawrimore J (2008) Improvements to NOAA’s historical merged land-ocean surface temperature analysis (1880–2006). J Clim 21:2283–2296CrossRefGoogle Scholar
  26. Sutton R, Jewson S, Rowell D (2000) The elements of climate variability in the tropical Atlantic region. J Clim 13:3261–3284CrossRefGoogle Scholar
  27. Taylor KE, Stouffer RJ, Meehl GA (2012) An overview of CMIP5 and the experiment design. Bull Am Meteorol Soc 93:485–498CrossRefGoogle Scholar
  28. Wang C (2002) Atlantic climate variability and its associated atmospheric circulation cells. J Clim 15:1516–1536CrossRefGoogle Scholar
  29. Wang C (2006) An overlooked feature of tropical climate: inter-Pacific-Atlantic variability. Geophys Res Lett 33:L12702. doi: 10.1029/2006GL026324 CrossRefGoogle Scholar
  30. Webster PJ, Palmer TN (1997) The past and the future of El Niño. Nature 390:562–564CrossRefGoogle Scholar
  31. Zebiak SE (1993) Air-sea interaction in the equatorial Atlantic region. J Clim 6:1567–1586CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  1. 1.Institute of GeographyUniversity of AugsburgAugsburgGermany

Personalised recommendations