Climate Dynamics

, Volume 45, Issue 5–6, pp 1207–1217 | Cite as

Quantitative decomposition of radiative and non-radiative contributions to temperature anomalies related to siberian high variability

  • Tae-Won Park
  • Jee-Hoon Jeong
  • Yi Deng
  • Renjun Zhou
  • Ming Cai
Article

Abstract

In this study, we carried out an attribution analysis that quantitatively assessed relative contributions to the observed temperature anomalies associated with strong and weak Siberian High (SH). Relative contributions of radiative and non-radiative processes to the variation of surface temperature, in terms of both amplitude and spatial pattern, were analyzed. The strong SH activity leads to the continental-scale cold temperature anomalies covering eastern Siberia, Mongolia, East China, and Korea (i.e., SH domain). The decomposition of the observed temperature anomalies associated with the SH variation was achieved with the Coupled atmosphere–surface climate Feedback-Responses Analysis Method, in which the energy balance in the atmosphere–surface column and linearization of radiative energy perturbation are formulated. For the mean amplitude of −3.13 K of cold temperature anomaly over the SH domain, sensible heat flux is tightly connected with a cooling of −1.26 K. Atmospheric dynamics adds another −1.13 K through the large-scale cold advection originated from the high latitudes. The longwave effects of cloud and water vapor account for the remaining cold anomalies of −1.00 and −0.60 K, respectively, while surface dynamics (0.71 K) and latent heat flux (0.26 K) help to mitigate the cold temperature anomalies. Influences of ozone and albedo processes are found to be relatively weak.

Keywords

Siberian High-related temerature change Temperature decomposition CFRAM Radiative and non-radiative processess 

Notes

Acknowledgments

The ERA Interim data used in this study were provided by the European Centre for Medium-Range Weather Forecasts (ECMWF). Yi Deng and Tae-Won Park were supported by the DOE’s Office of Science Regional and Global Climate Modeling (RGCM) Program (DE-SC0005596) and by NSF grants AGS-1147601 and AGS-1354402. Jee-Hoon Jeong was supported by the Korea Polar Research Institute (PE14010).

References

  1. Bao XH, Zhang FQ (2013) Evaluation of NCEP-CFSR, NCEP-NCAR, ERA-Interim, and ERA-40 reanalysis datasets against independent sounding observations over the Tibetan Plateau. J Climate 26(1):206–214. doi:10.1175/JCLI-D-12-00056.1 CrossRefGoogle Scholar
  2. Boyle JS (1986) Comparison of the synoptic conditions in midlatitudes accompanying cold surges over Eastern Asia for the months of December 1974 and 1978. 1. Monthly mean fields and individual events. Mon Weather Rev 114(5):903–918CrossRefGoogle Scholar
  3. Bracegirdle TJ, Marshall GJ (2012) The reliability of antarctic tropospheric pressure and temperature in the latest global reanalyses. J Climate 25(20):7138–7146. doi:10.1175/JCLI-D-11-00685.1 CrossRefGoogle Scholar
  4. Cai M, Lu JH (2009) A new framework for isolating individual feedback processes in coupled general circulation climate models. Part II: method demonstrations and comparisons. Clim Dynam 32(6):887–900. doi:10.1007/s00382-008-0424-4
  5. Chen TC, Huang WR, Yoon J (2004) Interannual variation of the east Asian cold surge activity. J Climate 17(2):401–413CrossRefGoogle Scholar
  6. Cohen J, Saito K, Entekhabi D (2001) The role of the Siberian high in Northern Hemisphere climate variability. Geophys Res Lett 28(2):299–302CrossRefGoogle Scholar
  7. Decker M, Brunke MA, Wang Z, Sakaguchi K, Zeng XB, Bosilovich MG (2012) Evaluation of the reanalysis products from GSFC, NCEP, and ECMWF using flux tower observations. J Climate 25(6):1916–1944. doi:10.1175/JCLI-D-11-00004.1 CrossRefGoogle Scholar
  8. Dee DP, Uppala SM, Simmons AJ, Berrisford P, Poli P, Kobayashi S, Andrae U, Balmaseda MA, Balsamo G, Bauer P, Bechtold P, Beljaars ACM, van de Berg L, Bidlot J, Bormann N, Delsol C, Dragani R, Fuentes M, Geer AJ, Haimberger L, Healy SB, Hersbach H, Holm EV, Isaksen L, Kallberg P, Kohler M, Matricardi M, McNally AP, Monge-Sanz BM, Morcrette JJ, Park BK, Peubey C, de Rosnay P, Tavolato C, Thepaut JN, Vitart F (2011) The ERA-Interim reanalysis: configuration and performance of the data assimilation system. Q J Roy Meteor Soc 137(656):553–597. doi:10.1002/Qj.828 CrossRefGoogle Scholar
  9. Deng Y, Park T-W, Cai M (2012) Process-based decomposition of the global surface temperature response to El Niño in Boreal Winter. J Atmos Sci 69(5):1706–1712. doi:10.1175/JAS-D-12-023.1 CrossRefGoogle Scholar
  10. Ding YH (1990) Buildup, air-mass transformation and propagation of siberian high and its relations to cold surge in East-Asia. Meteorol Atmos Phys 44(1–4):281–292Google Scholar
  11. Ding Y, Krishnamurti TN (1987) Heat-budget of the siberian high and the winter monsoon. Mon Weather Rev 115(10):2428–2449CrossRefGoogle Scholar
  12. Fu Q, Liou KN (1992) On the correlated K-distribution method for radiative-transfer in nonhomogeneous atmospheres. J Atmos Sci 49(22):2139–2156CrossRefGoogle Scholar
  13. Fu Q, Liou KN (1993) Parameterization of the radiative properties of cirrus clouds. J Atmos Sci 50(13):2008–2025CrossRefGoogle Scholar
  14. Geleyn J-F, Hollingsworth A (1979) An economical, analytical method for the computation of the interaction between scattering and line absorption of radiation. Contribut Atmos Phys 52:1–16Google Scholar
  15. Gong DY, Wang SW, Zhu JH (2001) East Asian winter monsoon and Arctic Oscillation. Geophys Res Lett 28(10):2073–2076CrossRefGoogle Scholar
  16. Hong CC, Hsu HH, Chia HH, Wu CY (2008) Decadal relationship between the North Atlantic Oscillation and cold surge frequency in Taiwan. Geophys Res Lett 35(24). doi:10.1029/2008gl034766
  17. Jakobson E, Vihma T, Palo T, Jakobson L, Keernik H, Jaagus J (2012) Validation of atmospheric reanalyses over the central Arctic Ocean. Geophys Res Lett 39:L10802. doi:10.1029/2012GL051591 Google Scholar
  18. Jeong J-H, Ho C-H (2005) Changes in occurrence of cold surges over east Asia in association with Arctic Oscillation. Geophys Res Lett 32:L14704. doi:10.1029/2005GL023024 CrossRefGoogle Scholar
  19. Jeong J-H, Ho C-H, Kim B-M, Kwon W-T (2005) Influence of the Madden-Julian Oscillation on wintertime surface air temperature and cold surges in east Asia. J Geophys Res Atmos 110:D11104. doi:10.1029/2004jd005408 CrossRefGoogle Scholar
  20. Jeong J-H, Kim B-M, Ho C-H, Chen D, Lim G-H (2006) Stratospheric origin of cold surge occurrence in East Asia. Geophys Res Lett 33:L14710. doi:10.1029/2006GL026607 CrossRefGoogle Scholar
  21. Jeong JH, Ou TH, Linderholm HW, Kim BM, Kim SJ, Kug JS, Chen DL (2011) Recent recovery of the Siberian High intensity. J Geophys Res Atmos 116. doi:10.1029/2011jd015904
  22. Jhun JG, Lee EJ (2004) A new East Asian winter monsoon index and associated characteristics of the winter monsoon. J Climate 17(4):711–726CrossRefGoogle Scholar
  23. Kopp G, Lean JL (2011) A new, lower value of total solar irradiance: evidence and climate significance. Geophys Res Lett 38(1):L01706. doi:10.1029/2010gl045777 CrossRefGoogle Scholar
  24. Lu JH, Cai M (2009) A new framework for isolating individual feedback processes in coupled general circulation climate models. Part I: formulation. Clim Dynam 32(6):873–885. doi:10.1007/S00382-008-0425-3 CrossRefGoogle Scholar
  25. Lydolf PE (1977) Climates of the Soviet Union. Elsevier, AmsterdamGoogle Scholar
  26. Mooney PA, Mulligan FJ, Fealy R (2011) Comparison of ERA-40, ERA-Interim and NCEP/NCAR reanalysis data with observed surface air temperatures over Ireland. Int J Climatol 31(4):545–557. doi:10.1002/JOC.2098 CrossRefGoogle Scholar
  27. Panagiotopoulos F, Shahgedanova M, Hannachi A, Stephenson DB (2005) Observed trends and teleconnections of the Siberian high: a recently declining center of action. J Climate 18(9):1411–1422CrossRefGoogle Scholar
  28. Park T-W, Ho C-H, Yang S (2011) Relationship between the Arctic Oscillation and cold surges over East Asia. J Climate 24(1):68–83. doi:10.1175/2010jcli3529.1 CrossRefGoogle Scholar
  29. Park T-W, Deng Y, Cai M (2012) Feedback attribution of the El Niño-Southern Oscillation-related atmospheric and surface temperature anomalies. J Geophys Res 117(D23):D23101. doi:10.1029/2012JD018468 CrossRefGoogle Scholar
  30. Park T-W, Deng Y, Cai M, Jeong J-H, Zhou R (2014) A dissection of the surface temperature biases in the Community Earth System Model. Clim Dynam 1–17. doi:10.1007/s00382-013-2029-9
  31. Pincus R, Klein SA (2000) Unresolved spatial variability and microphysical process rates in large-scale models. J Geophys Res-Atmos 105(D22):27059–27065. doi:10.1029/2000JD900504 CrossRefGoogle Scholar
  32. Raisanen P, Barker HW, Khairoutdinov MF, Li JN, Randall DA (2004) Stochastic generation of subgrid-scale cloudy columns for large-scale models. Q J Roy Meteor Soc 130(601):2047–2067. doi:10.1256/QJ.03.99 CrossRefGoogle Scholar
  33. Rodrigo JS, Buchlin JM, van Beeck J, Lenaerts JTM, van den Broeke MR (2013) Evaluation of the antarctic surface wind climate from ERA reanalyses and RACMO2/ANT simulations based on automatic weather stations. Clim Dynam 40(1–2):353–376. doi:10.1007/s00382-012-1396-y CrossRefGoogle Scholar
  34. Szczypta C, Calvet JC, Albergel C, Balsamo G, Boussetta S, Carrer D, Lafont S, Meurey C (2011) Verification of the new ECMWF ERA-Interim reanalysis over France. Hydrol Earth Syst Sci 15(2):647–666. doi:10.5194/hess-15-647-2011 CrossRefGoogle Scholar
  35. Takaya K, Nakamura H (2005a) Mechanisms of intraseasonal amplification of the cold Siberian high. J Atmos Sci 62(12):4423–4440CrossRefGoogle Scholar
  36. Takaya K, Nakamura H (2005b) Geographical dependence of upper-level blocking formation associated with intraseasonal amplification of the Siberian high. J Atmos Sci 62(12):4441–4449CrossRefGoogle Scholar
  37. Tastula EM, Vihma T, Andreas EL, Galperin B (2013) Validation of the diurnal cycles in atmospheric reanalyses over Antarctic sea ice. J Geophys Res-Atmos 118(10):4194–4204. doi:10.1002/JGRD.50336 CrossRefGoogle Scholar
  38. Taylor PC, Ellingson RG, Cai M (2011) Geographical distribution of climate feedbacks in the NCAR CCSM3.0. J Climate 24(11):2737–2753. doi:10.1175/2010JCLI3788.1
  39. Taylor PC, Cai M, Hu AX, Meehl J, Washington W, Zhang GJ (2013) A decomposition of feedback contributions to polar warming amplification. J Climate 26(18):7023–7043. doi:10.1175/JCLI-D-12-00696.1 CrossRefGoogle Scholar
  40. Wang AH, Zeng XB (2012) Evaluation of multireanalysis products with in situ observations over the Tibetan Plateau. J Geophys Res Atmos 117:D05102. doi:10.1029/2011JD016553 Google Scholar
  41. Wang L, Kodera K, Chen W (2012) Observed triggering of tropical convection by a cold surge: implications for MJO initiation. Q J Roy Meteor Soc 138(668):1740–1750. doi:10.1002/Qj.1905 CrossRefGoogle Scholar
  42. Zhang Y, Sperber KR, Boyle JS (1997) Climatology and interannual variation of the East Asian winter monsoon: results from the 1979-95 NCEP/NCAR reanalysis. Mon Weather Rev 125(10):2605–2619CrossRefGoogle Scholar
  43. Zygmuntowska M, Mauritsen T, Quaas J, Kaleschke L (2012) Arctic clouds and surface radiation—a critical comparison of satellite retrievals and the ERA-Interim reanalysis. Atmos Chem Phys 12(14):6667–6677. doi:10.5194/ACP-12-6667-2012 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Tae-Won Park
    • 1
  • Jee-Hoon Jeong
    • 2
  • Yi Deng
    • 1
  • Renjun Zhou
    • 3
  • Ming Cai
    • 4
  1. 1.School of Earth and Atmospheric SciencesGeorgia Institute of TechnologyAtlantaUSA
  2. 2.Department of OceanographyChonnam National UniversityGwangjuSouth Korea
  3. 3.CAS Key Laboratory of Geospace Environment, School of Earth and Space SciencesUniversity of Science and Technology of ChinaHefeiChina
  4. 4.Department of Earth, Ocean, and Atmospheric ScienceFlorida State UniversityTallahasseeUSA

Personalised recommendations