Climate Dynamics

, Volume 44, Issue 9–10, pp 2539–2555 | Cite as

Added-value from initialization in predictions of Atlantic multi-decadal variability

  • J. García-SerranoEmail author
  • V. Guemas
  • F. J. Doblas-Reyes


Identifying regions sensitive to external radiative changes, including anthropogenic (sulphate aerosols and greenhouse gases) and natural (volcanoes and solar variations) forcings, is important to formulate actionable information at multi-year time-scales. Internally-generated climate variability can overcome this radiative forcing, especially at regional level, so that detecting the areas for this potential dominance is likewise critical for decadal prediction. This work aims to clarify where each contribution has the largest effect on North Atlantic sea surface temperature (SST) predictions in relation to the Atlantic multi-decadal variability (AMV). Initialized decadal hindcasts and radiatively-forced historical simulations from the fifth phase of the Climate Model Intercomparison Project are analysed to assess multi-year skill of the AMV. The initialized hindcasts reproduce better the phase of the AMV index fluctuations. The radiatively-forced component consists of a residual positive trend, although its identification is ambiguous. Initialization reduces the inter-model spread when estimating the level of AMV skill, thus reducing its uncertainty. Our results show a skilful performance of the initialized hindcasts in capturing the AMV-related SST anomalies over the subpolar gyre and Labrador Sea regions, as well as in the eastern subtropical basin, and the inability of the radiatively-forced historical runs to simulate the horseshoe-like AMV signature over the North Atlantic. Initialization outperforms empirical predictions based on persistence beyond 1–4 years ahead, suggesting that ocean dynamics play a role in the AMV predictability beyond the thermal inertia. The initialized hindcasts are also more skilful at reproducing the observed AMV teleconnection to the West African monsoon. The impact of the start date frequency is also described, showing that the standard of 5-year interval between start dates yields the main features of the AMV skill that are robustly detected in hindcasts with yearly start date sampling. This work updates previous studies, complementing them, and concludes that skilful initialized multi-model forecasts of the AMV-related climate variability can be formulated, improving uninitialized projections, until 3–6 years ahead.


Decadal climate prediction Atlantic multi-decadal variability Multi-model ensemble hindcasts 



This study was supported by the Spanish RUCSS project (CGL2010-20657), the European Union’s FP7-funded SPECS (ENV-308378) and NACLIM (ENV-308299) projects, and the Catalan Government. Technical support at the Climate Forecasting Unit (IC3) is gratefully acknowledged. The comments of two anonymous reviewers have significantly improved the manuscript.

Supplementary material

382_2014_2370_MOESM1_ESM.doc (2.3 mb)
Supplementary material 1 (DOC 2336 kb)


  1. Bellucci A, Gualdi S, Masina S, Storto A, Scoccimarro E, Cagnazzo C, Fogli P, Manzini E, Navarra A (2013) Decadal climate predictions with a coupled OAGCM initialized with oceanic reanalyses. Clim Dyn 40:1483–1497CrossRefGoogle Scholar
  2. Bellucci A et al (2014) An assessment of a multi-model ensemble of decadal climate predictions. Clim Dyn. doi: 10.1007/s00382-014-2164-y Google Scholar
  3. Booth BBB, Dunstone NJ, Halloran PR, Andrews T, Bellouin N (2012) Aerosols implicated as a prime driver of twentieth-century North Atlantic climate variability. Nature 484:228–232CrossRefGoogle Scholar
  4. Branstator G, Teng H (2012) Potential impact of initialization on decadal prediction as assessed for CMIP5 models. Geophys Res Lett 39:L12703CrossRefGoogle Scholar
  5. Caron L-P, Jones CG, Doblas-Reyes FJ (2013) Multi-year prediction skill of Atlantic hurricane activity in CMIP5 decadal hindcasts. Clim Dyn. doi: 10.1007/s00382-013-1773-1 Google Scholar
  6. Chikamoto Y et al (2013) An overview of decadal climate predictability in a multi-model ensemble by climate model MIROC. Clim Dyn 40:1201–1222CrossRefGoogle Scholar
  7. Corti S, Weisheimer A, Palmer TN, Doblas-Reyes FJ, Magnusson L (2012) Reliability of decadal predictions. Geophys Res Lett 39:L21712CrossRefGoogle Scholar
  8. DelSole T, Tippet MK, Shukla J (2011) A significant component of unforced variability in the recent acceleration of global warming. J Clim 24:909–926CrossRefGoogle Scholar
  9. DelSole T, Jia L, Tippet MK (2013) Decadal prediction of observed and simulated sea surface temperatures. Geophys Res Lett 40:2773–2778CrossRefGoogle Scholar
  10. Dijkstra HA, te Raa LA, Schmeits M, Gerrits J (2006) On the physics of the Atlantic multidecadal oscillation. Ocean Dyn 56:36–50CrossRefGoogle Scholar
  11. Doblas-Reyes FJ, Weisheimer A, Déqué M, Keenlyside N, McVean M, Murphy JM, Rogel P, Smith D, Palmer TN (2009) Addressing model uncertainty in seasonal and annual dynamical seasonal forecasts. Q J R Meteorol Soc 135:1538–1559CrossRefGoogle Scholar
  12. Doblas-Reyes FJ, Weisheimer A, Palmer TN, Murphy JM, Smith D (2010) Forecast quality assessment of the ENSEMBLES seasonal-to-decadal Stream 2 hindcasts. ECMWF Tech Memo 621, 45 pp, Reading, UKGoogle Scholar
  13. Doblas-Reyes FJ, Balmaseda MA, Weisheimer A, Palmer TN (2011) Decadal climate prediction with the ECMWF coupled forecast system: impact of ocean observations. J Geophys Res 116:D19111CrossRefGoogle Scholar
  14. Doblas-Reyes FJ, Andreu-Burillo I, Chikamoto Y, García-Serrano J, Guemas V, Kimoto M, Mochizuki T, Rodrigues LRL, van Oldenborgh GJ (2013) Initialized near-term regional climate change prediction. Nature Comms. doi: 10.1038/ncomms2704 Google Scholar
  15. Drijfhout SS, van Oldenborgh GJ, Cimatoribus A (2012) Is a decline of AMOC causing the warming hole above the North Atlantic in observed and modeled warming patterns? J Clim 25:8373–8379CrossRefGoogle Scholar
  16. Dunstone NJ, Smith DM, Eade R (2011) Multi-year predictability of the tropical Atlantic atmosphere driven by the high latitude North Atlantic Ocean. Geophys Res Lett 38:L14701CrossRefGoogle Scholar
  17. García-Serrano J, Doblas-Reyes FJ (2012) On the assessment of near-surface global temperature and North Atlantic multi-decadal variability in the ENSEMBLES decadal hindcast. Clim Dyn 39:2025–2040CrossRefGoogle Scholar
  18. García-Serrano J, Doblas-Reyes FJ, Coelho CAS (2012) Understanding Atlantic multi-decadal variability prediction skill. Geophys Res Lett 39:L18708CrossRefGoogle Scholar
  19. García-Serrano J, Doblas-Reyes FJ, Haarsma RJ, Polo I (2013) Decadal prediction of the dominant West African monsoon rainfall modes. J Geophy Res 118:5260–5279Google Scholar
  20. Goddard L et al (2013) A verification framework for interannual-to-decadal predictions experiments. Clim Dyn 40:245–272Google Scholar
  21. Guemas V, García-Serrano J, Mariotti A, Doblas-Reyes FJ, Caron L-P (2014) Prospects for decadal climate prediction in the Mediterranean region. Q J R Meteorol Soc. doi: 10.1002/qj.2379 Google Scholar
  22. Ham Y-G, Rienecker MM, Suarez MJ, Vikhliaev Y, Zhao B, Marshak J, Vernieres G, Schubert SD (2014) Decadal prediction skill in the GEOS-5 forecast system. Clim Dyn 42:1–20CrossRefGoogle Scholar
  23. Hazeleger W, Wouters B, van Oldenborgh GJ, Corti S, Palmer TN, Smith D, Dunstone N, Kröger J, Pohlmann H, von Storch J-S (2013) Predicting multi-year North Atlantic Ocean variability. J Geophys Res Oceans 118. doi: 10.1002/jgrc.20117
  24. Ho CK, Hawkins E, Shaffrey L, Bröcker J, Hermanson L, Murphy JM, Smith DM, Eade R (2013) Examining reliability of seasonal to decadal sea surface temperature forecasts: the role of ensemble dispersion. Geophys Res Lett 40:5770–5775CrossRefGoogle Scholar
  25. Keenlyside N, Latif M, Jungclaus J, Kornblueh L, Roeckner E (2008) Advancing decadal-scale climate prediction in the North Atlantic sector. Nature 453:84–88CrossRefGoogle Scholar
  26. Kim H-K, Webster PJ, Curry JA (2012) Evaluation of CMIP5 decadal hindcast simulations. Geophys Res Lett 39:L10701Google Scholar
  27. Knight JR, Allan RJ, Folland CK, Vellinga M, Mann ME (2005) A signature of persistence natural thermohaline circulation cycles in observed climate. Geophys Res Lett 32:L20708CrossRefGoogle Scholar
  28. Martin ER, Thorncroft C, Booth BBB (2014) The multidecadal Atlantic SST-Sahel rainfall teleconnection in CMIP5 simulations. J Clim 27:784–806Google Scholar
  29. Matei D, Baehr J, Jungclaus JH, Haak H, Müller WA, Marotzke J (2012a) Multi-year prediction of monthly mean Atlantic meridional overturning circulation at 26.5N. Science 335:76–79CrossRefGoogle Scholar
  30. Matei D, Pohlmann H, Jungclaus JH, Müller WA, Haak H, Marotzke J (2012b) Two tales of initializing decadal climate predictions experiments with the ECHAM5/MPI-OM model. J Clim 25:8502–8523CrossRefGoogle Scholar
  31. Meehl GA et al (2009) Decadal prediction: can it be skillful? Bull Amer Meteor Soc 90:1467–1485CrossRefGoogle Scholar
  32. Meehl GA et al (2014) Decadal climate prediction: an update from the trenches. Bull Am Meteor Soc 95:243–267CrossRefGoogle Scholar
  33. Mochizuki T, Chikamoto Y, Kimoto M, Ishii M, Tatebe H, Komuro Y, Sakamoto TT, Watanabe M, Mori M (2012) Decadal prediction using a recent series of MIROC global climate models. J Meteor Soc Jpn 90A:373–383CrossRefGoogle Scholar
  34. Mohino E, Janicot S, Bader J (2011) Sahelian rainfall and decadal to multidecadal SST variability. Clim Dyn 37:419–440Google Scholar
  35. Msadek R, Dixon KW, Delworth TL, Hurlin W (2010) Assessing the predictability of the Atlantic meridional overturning circulation and associated fingerprints. Geophys Res Lett 37:L19608Google Scholar
  36. Msadek R, Delworth TL, Rosati A, Anderson W, Vecchi G, Chang Y-S, Dixon KW, Gudgel RG, Stern W, Winttenberg A, Yang X, Zeng F, Zhang R, Zhang S (2014) Predicting a decadal shift in North Atlantic climate variability using the GFDL forecast system. J Clim 27:6472–6496CrossRefGoogle Scholar
  37. Müller WA, Pohlmann H, Sienz F, Smith D (2014) Decadal climate predictions for the period 1901–2010 with a coupled climate model. Geophys Res Lett 41:2011–2107CrossRefGoogle Scholar
  38. Murphy JM, Kattsov V, Keenlyside N, Kimoto M, Meehl GA, Mehta V, Pohlmann H, Scaife AA, Smith DM (2010) Towards prediction of decadal climate variability and change. Proced Environ Sci 1:287–304CrossRefGoogle Scholar
  39. Ortega P, Hawkins E, Sutton R (2011) Processes governing the predictability of the Atlantic meridional overturning circulation in a coupled GCM. Clim Dyn 37:1771–1782CrossRefGoogle Scholar
  40. Ottera OH, Bentsen M, Drange H, Suo L (2010) External forcing as a metronome for Atlantic multidecadal variability. Nature Geosci 3:688–694CrossRefGoogle Scholar
  41. Pohlmann H, Botzet M, Latif M, Roesch A, Wild M, Tschuck P (2004) Estimating the decadal predictability of a coupled AOGCM. J Clim 17:4463–4472CrossRefGoogle Scholar
  42. Pohlmann H, Jungclaus JH, Köhl A, Stammer D, Marotzke J (2009) Initializing decadal climate predictions with the GECCO oceanic synthesis: effects on the North Atlantic. J Clim 22:3926–3938CrossRefGoogle Scholar
  43. Pohlmann H, Smith DM, Balmaseda MA, Keenlyside NS, Masina S, Matei D, Müller WA, Rogel P (2013) Predictability of the mid-latitude Atlantic meridional overturning circulation in a multi-model system. Clim Dyn. doi: 10.1007/s00382-013-1663-6 Google Scholar
  44. Robson JI, Sutton RT, Lohmann K, Smith DM, Palmer MD (2012a) Causes of the rapid warming of the North Atlantic Ocean in the mid 1990s. J Clim 25:4116–4134CrossRefGoogle Scholar
  45. Robson JI, Sutton RT, Smith DM (2012b) Initialized decadal predictions of the rapid warming of the North Atlantic Ocean in the mid 1990s. Geophys Res Lett 39:L19713CrossRefGoogle Scholar
  46. Robson JI, Sutton RT, Smith DM (2013) Predictable climate impacts of the decadal changes in the ocean in the 1990s. J Clim 26:6329–6339CrossRefGoogle Scholar
  47. Robson JI, Sutton RT, Smith DM (2014) Decadal predictions of the cooling and freshening of the North Atlantic in the 1960s and the role of the ocean circulation. Clim Dyn 42:2353–2365CrossRefGoogle Scholar
  48. Smith TM, Reynolds RW, Peterson TC, Lawrimore J (2008) Improvements to NOAA’s historical merged land-ocean surface temperature analysis (1880–2006). J Clim 21:2283–2296CrossRefGoogle Scholar
  49. Smith DM, Eade R, Dunstone NJ, Fereday D, Murphy JM, Pohlmann H, Scaife AA (2010) Skilful multi-year predictions of Atlantic hurricane frequency. Nature Geosci 3:846–849CrossRefGoogle Scholar
  50. Smith DM, Scaife AA, Kirtman BP (2012) What is the current state of scientific knowledge with regard to seasonal and decadal forecasting? Environ Res Lett 7:015602CrossRefGoogle Scholar
  51. Smith DM, Scaife AA, Boer GJ, Caian M, Doblas-Reyes FJ, Guemas V, Hawkins E, Hazeleger W, Hermanson L, Ho CK, Ishii M, Kharin V, Kimoto M, Kirtman BP, Lean J, Matei D, Merryfield WJ, Müller WA, Pohlmann H, Rosati A, Wouters B, Wyser K (2013a) Real-time multi-model decadal predictions. Clim Dyn 41:2875–2888Google Scholar
  52. Smith DM, Eade R, Pohlmann H (2013b) A comparison of full-field and anomaly initialization for seasonal to decadal climate prediction. Clim Dyn 41:3325–3338CrossRefGoogle Scholar
  53. Sutton RT, Hodson DLR (2005) Atlantic Ocean forcing of North American and European summer climate. Science 309:115–118Google Scholar
  54. Taylor KE, Stouffer RJ, Meehl GA (2012) An overview of CMIP5 and the experimental design. Bull Am Meteor Soc 93:485–498CrossRefGoogle Scholar
  55. Terray L (2012) Evidence for multiple drivers of North Atlantic multi-decadal climate variability. Geophys Res Lett 39:L19712CrossRefGoogle Scholar
  56. Ting M, Kushnir Y, Seager R, Li C (2009) Forced and internal twentieth-century SST trends in the North Atlantic. J Clim 22:1469–1481CrossRefGoogle Scholar
  57. Ting M, Kushnir Y, Seager R, Li C (2011) Robust features of Atlantic multi-decadal variability and its climate impacts. Geophys Res Lett 38:L17705CrossRefGoogle Scholar
  58. Trenberth KE, Shea DJ (2006) Atlantic hurricanes and natural variability in 2005. Geophys Res Lett 33:L12704CrossRefGoogle Scholar
  59. van Oldenborgh GJ, te Raa LA, Dijkstra HA, Philip SY (2009) Frequency- or amplitude-dependent effects of the Atlantic meridional overturning on the tropical Pacific Ocean. Ocean Sci 5:293–301Google Scholar
  60. van Oldenborgh GJ, Doblas-Reyes FJ, Wouters B, Hazeleger W (2012) Decadal prediction skill in a multi-model ensemble. Clim Dyn 38:1263–1280CrossRefGoogle Scholar
  61. Vecchi GA et al (2013) Multi-year predictions of North Atlantic hurricane frequency: promise and limitations. J Clim. doi: 10.1175/JCLI-D-12-00464.1 Google Scholar
  62. Wouters B, Drijfhout SS, Hazeleger W (2012) Interdecadal North Atlantic meridional overturning circulation variability in EC-EARTH. Clim Dyn 39:2695–2712CrossRefGoogle Scholar
  63. Yeager S, Karspeck A, Danabasoglu G, Tribbia J, Teng H (2012) A decadal prediction case study: late 20th century North Atlantic Ocean heat content. J Clim 25:5173–5189CrossRefGoogle Scholar
  64. Zhang R, Delworth TL, Sutton R, Hodson DLR, Dixon KW, Held IM, Kushnir Y, Marshall J, Ming Y, Msadek R, Robson J, Rosati AJ, Ting M, Vecchi GA (2013) Have aerosols caused the observed Atlantic multi-decadal variability? J Atmos Sci 70:1135–1143CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • J. García-Serrano
    • 1
    • 2
    Email author
  • V. Guemas
    • 1
    • 3
  • F. J. Doblas-Reyes
    • 1
    • 4
  1. 1.Institut Català de Ciències del Clima (IC3)BarcelonaSpain
  2. 2.LOCEAN-IPSLUniversité Pierre et Marie Curie (UPMC)ParisFrance
  3. 3.Centre National de Recherches Metéorologiques (CNRM/GAME)ToulouseFrance
  4. 4.Institució Catalana de Recerca i Estudis Avançats (ICREA)BarcelonaSpain

Personalised recommendations