Advertisement

Climate Dynamics

, Volume 44, Issue 9–10, pp 2333–2349 | Cite as

Effect of surface restoring on subsurface variability in a climate model during 1949–2005

  • Sulagna Ray
  • Didier Swingedouw
  • Juliette Mignot
  • Eric Guilyardi
Article

Abstract

Initializing the ocean for decadal predictability studies is a challenge, as it requires reconstructing the little observed subsurface trajectory of ocean variability. In this study we explore to what extent surface nudging using well-observed sea surface temperature (SST) can reconstruct the deeper ocean variations for the 1949–2005 period. An ensemble made with a nudged version of the IPSLCM5A model and compared to ocean reanalyses and reconstructed datasets. The SST is restored to observations using a physically-based relaxation coefficient, in contrast to earlier studies, which use a much larger value. The assessment is restricted to the regions where the ocean reanalyses agree, i.e. in the upper 500 m of the ocean, although this can be latitude and basin dependent. Significant reconstruction of the subsurface is achieved in specific regions, namely region of subduction in the subtropical Atlantic, below the thermocline in the equatorial Pacific and, in some cases, in the North Atlantic deep convection regions. Beyond the mean correlations, ocean integrals are used to explore the time evolution of the correlation over 20-year windows. Classical fixed depth heat content diagnostics do not exhibit any significant reconstruction between the different existing observation-based references and can therefore not be used to assess global average time-varying correlations in the nudged simulations. Using the physically based average temperature above an isotherm (14 °C) alleviates this issue in the tropics and subtropics and shows significant reconstruction of these quantities in the nudged simulations for several decades. This skill is attributed to the wind stress reconstruction in the tropics, as already demonstrated in a perfect model study using the same model. Thus, we also show here the robustness of this result in an historical and observational context.

Keywords

Decadal climate prediction Initial conditions Subsurface reconstruction Surface nudging 

Notes

Acknowledgments

We acknowledge Jerome Servonnat for helpful discussions, Marie-Alice Foujols and Sébastien Denvil for help with the model and data handling. This study was partly funded by the EPIDOM project (GICC), by the EU project SPECS funded by the European Commission’s Seventh Framework Research Programme under the Grant agreement 308378 and by the MORDICUS Project funded by the Agence Nationale de la Recherche under Grant agreement ANR-13-SENV-0002-02. Computations were carried out at the CCRT supercomputing centre. We would also like to thank the two anonymous reviewers for their constructive suggestions in the revision of this paper.

References

  1. AchutaRao KM, Ishii M, Santer BD, Gleckler PJ, Taylor KE, Barnett TP, Pierce DW, Stouffer RJ, Wigley TML (2007) Simulated and observed variability in ocean temperature and heat content. Proc Nat Acad Sci 104(26):10768–10773CrossRefGoogle Scholar
  2. Aumont O, Bopp L (2006) Globalizing results from ocean in situ iron fertilization studies. Glob Biogeochem Cycles 20(2) GB2017. doi: 10.1029/2005GB002591
  3. Balmaseda MA, Mogensen K, Weaver AT (2013) Evaluation of the ECMWF ocean reanalysis system ORAS4. Q J R Meteorol Soc. doi: 10.1002/qj.2063 Google Scholar
  4. Bellucci A, Gualdi S, Masina S, Storto A, Scoccimarro E, Cagnazzo C, Fogli P, Manzini E, Navarra A (2013) Decadal climate predictions with a coupled OAGCM initialized with oceanic reanalyses. Clim Dyn 40:1483–1497. doi: 10.1007/s00382-012-1468-z CrossRefGoogle Scholar
  5. Bretherton CS, Widmann M, Dymnikov VP, Wallace JM, Blade I (1999) Effective number of degrees of freedom of a spatial field. J Clim 12:1990–2009CrossRefGoogle Scholar
  6. Bromwich DH, Fogt RL (2004) Strong trends in the skill of the ERA-40 and NCEP-NCAR reanalyses in the high and midlatitudes of the Southern hemisphere, 1958–2001. J Clim 17(23):4603–4619Google Scholar
  7. Carman JC, McClean JL (2011) Investigation of IPCC AR4 coupled climate model North Atlantic mode water formation. Ocean Model 40(1):14–34CrossRefGoogle Scholar
  8. Carton JA, Giese BS (2008) A reanalysis of ocean climate using Simple Ocean Data Assimilation (SODA). Mon Weather Rev 136(8):2999–3017CrossRefGoogle Scholar
  9. Carton JA, Seidel HF, Giese BS (2012) Detecting historical ocean climate variability. J Geophys Res 117(C2):C02023  Google Scholar
  10. Chang YS, Zhang S, Rosati A, Delworth TL, Stern WF (2013) An assessment of oceanic variability for 1960–2010 from the GFDL ensemble coupled data assimilation. Clim Dyn 40(3–4):775–803CrossRefGoogle Scholar
  11. Chikamoto Y, Kimoto M, Ishii M et al (2012) An overview of decadal climate predictability in a multi-model ensemble by climate model MIROC. Clim Dyn 40:1201–1222CrossRefGoogle Scholar
  12. Compo GP, Whitaker JS, Sardeshmukh PD et al (2011) The twentieth century reanalysis project. Q J R Meteorol Soc 137(654):1–28CrossRefGoogle Scholar
  13. Corre L, Terray L, Balmaseda M, Ribes A, Weaver A (2012) Can oceanic reanalyses be used to assess recent anthropogenic changes and low-frequency internal variability of upper ocean temperature? Clim Dyn 38(5–6):877–896CrossRefGoogle Scholar
  14. Doblas-Reyes FJ, Andreu-Burillo I et al (2013) Initialized near-term regional climate change prediction. Nat Commun 4:1715CrossRefGoogle Scholar
  15. Domingues CM, Church JA, White NJ, Gleckler PJ, Wijffels SE, Barker PM, Dunn JR (2008) Improved estimates of upper-ocean warming and multi-decadal sea-level rise. Nature 453:1090–1093. doi: 10.1038/nature07080 CrossRefGoogle Scholar
  16. Dufresne J-L et al (2013) Climate change projections using the IPSL-CM5 earth system model from CMIP3 to CMIP5. Clim Dyn 40(9–10):2123–2165CrossRefGoogle Scholar
  17. Dunstone NJ, Smith DM (2010) Impact of atmosphere and sub-surface ocean data on decadal climate prediction. Geophys Res Lett 37(2):L02709Google Scholar
  18. Escudier R, Mignot J, Swingedouw D (2013) A 20-year coupled ocean-sea ice-atmosphere variability mode in the North Atlantic in an AOGCM. Clim Dyn 40(3–4):619–636CrossRefGoogle Scholar
  19. Fichefet T, Maqueda MAM (1997) Sensitivity of a global sea ice model to the treatment of ice thermodynamics and dynamics. J Geophys Res 102:2609–2612CrossRefGoogle Scholar
  20. Garcia-Serrano J, Guemas V, Doblas-Reyes FJ (submitted) Added-value from initialization in predictions of Atlantic multi-decadal variability. J ClimGoogle Scholar
  21. Giese BS, Ray S (2011) El Niño variability in simple ocean data assimilation (SODA), 1871–2008. J Geophys Res 116:C2CrossRefGoogle Scholar
  22. Gleckler PJ, Santer BD, Domingues CM et al (2012) Human-induced global ocean warming on multidecadal timescales. Nat Clim Chang 2(7):524–529Google Scholar
  23. Guemas V, Doblas-Reyes FJ, Andreu-Burillo I, Asif M (2013) Retrospective prediction of the global warming slowdown in the past decade. Nat Clim Change 3:649–653. doi: 10.1038/nclimate1863 CrossRefGoogle Scholar
  24. Hazeleger W, Wouters B, van Oldenborgh GJ, Corti S, Palmer T, Smith D, Dunstone N, Kröger J, Pohlmann H, von Storch J-S (2013a) Predicting multi-year North Atlantic Ocean variability. J Geophys Res 118(3):1087–1098. doi: 10.1002/jgrc.20117 CrossRefGoogle Scholar
  25. Hazeleger W, Guemas V, Wouters B, Corti S, Andreu-Burillo I, Doblas-Reyes FJ, Wyser K, Caian M (2013b) Multiyear climate predictions using two initialisation strategies. Geophys Res Lett 40(9):1794–1798. doi: 10.1002/grl.50355 CrossRefGoogle Scholar
  26. Hodson DL, Sutton RT (2012) The impact of resolution on the adjustment and decadal variability of the Atlantic meridional overturning circulation in a coupled climate model. Clim Dyn 39(12):3057–3073CrossRefGoogle Scholar
  27. Hourdin F et al (2013) Impact of the LMDZ atmospheric grid configuration on the climate and sensitivity of the IPSL-CM5A coupled model. Clim Dyn 40(9–10):2167–2192CrossRefGoogle Scholar
  28. Ishii M, Kimoto M (2009) Reevaluation of historical ocean heat content variations with time-varying XBT and MBT depth bias corrections. J Oceanogr 65(3):287–299CrossRefGoogle Scholar
  29. Karoly DJ (1989) Southern hemisphere circulation features associated with El Niño-Southern Oscillation events. J Clim 2(11):1239–1252Google Scholar
  30. Keenlyside NS, Latif M, Jungclaus J, Kornblueh L, Roeckner E (2008) Advancing decadal-scale climate prediction in the North Atlantic sector. Nature 453(7191):84–88CrossRefGoogle Scholar
  31. Kumar A, Wang H, Xue Y, Wang W (2014) How much of Monthly subsurface température variability in équatorial Pacific can be recovered by the spécification of sea surface températures? J Clim 27:1559–1577. doi: 10.1175/JCLI-D-13-00258.1 CrossRefGoogle Scholar
  32. Levitus S, Antonov JI, Boyer TP, Locarnini RA, Garcia HE, Mishonov AV (2009) Global ocean heat content 1955–2008 in light of recently revealed instrumentation problems. Geophys Res Lett 36(7):L07608Google Scholar
  33. Luo J-J, Masson S, Behera SK, Yamagata T (2008) Extended ENSO predictions using a fully coupled ocean–atmosphere model. J Clim 21(1):84–93CrossRefGoogle Scholar
  34. Madec G (2008) NEMO ocean engine. Note du Pole de modélisation, Institut Pierre-Simon Laplace (IPSL) France no. 27 ISSN no: 1288-1619Google Scholar
  35. Magnusson L, Alonso-Balmaseda M, Corti S, Molteni F, Stockdale T (2013) Evaluation of forecast strategies for seasonal and decadal forecasts in presence of systematic model errors. Clim Dyn 41(9–10):2393–2409. doi: 10.1007/s00382-012-1599-2
  36. Marti O et al (2010) Key features of the IPSL océan atmosphère model and its sensitivity to atmospheric résolution. Clim Dyn 34:1–26. doi: 10.1007/s00382-009-0640-6 CrossRefGoogle Scholar
  37. Masina S, Di Pietro P, Storto A, Navarra A (2011) Global ocean re-analyses for climate applications. Dyn Atmos Oceans 52(1):341–366CrossRefGoogle Scholar
  38. McPhaden MJ et al (1998) The Tropical Ocean Global Atmosphere (TOGA) observing system: a decade of progress. J Geophys Res 103:14169–14240CrossRefGoogle Scholar
  39. Meehl GA et al (2013) Decadal climate prediction: an update from the trenches. Bull Am Meteorol Soc. doi: 10.1175/BAMS-D-12-00241.1
  40. Meehl GA et al (2009) Decadal Prediction: Can it be skillful? Bull Am Meteorol Soc 90:1467–1485CrossRefGoogle Scholar
  41. Merryfield WJ, Lee WS, Boer GJ, Kharin VV, Pal B, Scinocca JF, Flato GM (2010) The first coupled historical forecasting project (chfp1). Atmos Ocean 48(4):263–283CrossRefGoogle Scholar
  42. Mignot J, Swingedouw D, Deshayes J, Marti O, Talandier C, Sefarian R, Lengaigne M, Madec G (2013) On the evolution of the oceanic component of the IPSL climate models from CMIP3 to CMIP5: a mean state comparison. Ocean Model 72:167–184CrossRefGoogle Scholar
  43. Palmer MD, Haines K (2009) Estimating oceanic heat content change using isotherms. J Clim 22(19):4953–4969CrossRefGoogle Scholar
  44. Pohlmann H, Jungclaus JH, Köhl A, Stammer D, Marotzke J (2009) Initializing decadal climate predictions with the GECCO oceanic synthesis: effects on the North Atlantic. J Clim 22(14):3926–3938CrossRefGoogle Scholar
  45. Pohlmann H, Smith DM, Balmaseda MA, Keenlyside NS, Masina S, Matei D, Muller WA, Rogel P (2013) Predictability of the mid-latitude Atlantic meridional overturning circulation in a multi-model system. Clim Dyn 41(3–4):775–785CrossRefGoogle Scholar
  46. Ray S, Giese BS (2012) Historical changes in El Niño and La Niña characteristics in an ocean reanalysis. J Geophy Res 117:C11Google Scholar
  47. Rayner NA, Parker DE, Horton EB, Folland CK, Alexander LV, Rowell DP, Kent EC, Kaplan A (2003) Global analyses of sea surface temperature, sea ice, and night marine air temperature since the late nineteenth century. J Geophys Res 108(D14):4407. doi: 10.1029/2002JD002670 CrossRefGoogle Scholar
  48. Reynolds RW, Smith TM, Liu C, Chelton DB, Casey KS, Schlax MG (2007) Daily high-resolution blended analyses for sea surface temperature. J Clim 20:5473–5496CrossRefGoogle Scholar
  49. Robson JI, Sutton RT, Smith DM (2012) Initialized decadal predictions of the rapid warming of the North Atlantic Ocean in the mid 1990s. Geophys Res Lett 39(19):L19713Google Scholar
  50. Sallée JB, Shuckburgh E, Bruneau N, Meijers AJS, Bracegirdle TJ, Wang Z, Roy T (2013) Assessment of Southern Ocean water mass circulation and characteristics in CMIP5 models: historical bias and forcing response. J Geophysic Res: Oceans 118(4):1830–1844  Google Scholar
  51. Servonnat J, Mignot J, Guilyardi E, Swingedouw D, Seferian R, Labetoulle S (2013, in revision) Reconstructing the subsurface ocean decadal variability using surface nudging in a perfect model framework. Clim Dyn (published online 2014). doi: 10.1007/s00382-014-2184-7
  52. Sloyan BM, Kamenkovich IV (2007) Simulation of subantarctic mode and Antarctic intermediate waters in climate models. J Clim 20:5061–5080CrossRefGoogle Scholar
  53. Smith DM, Cusack S, Colman AW, Folland CK, Harris GR, Murphy JM (2007) Improved surface temperature prediction for the coming decade from a global climate model. Science 317(5839):796–799CrossRefGoogle Scholar
  54. Smith TM, Reynolds RW, Peterson TC, Lawrimore J (2008) Improvements to NOAA’s historical merged land-ocean surface temperature analysis (1880–2006). J Clim 21(10):2283–2296CrossRefGoogle Scholar
  55. Smith DM, Eade R, Dunstone NJ, Fereday D, Murphy JM, Pohlmann H, Scaife AA (2010) Skilful multi-year predictions of Atlantic hurricane frequency. Nat Geosci 3(12):846–849CrossRefGoogle Scholar
  56. Smith DM, Eade R, Pohlmann H (2013) A comparison of full-field and anomaly initialization for seasonal to decadal climate prediction. Clim Dyn 41(11–12):3325–3338Google Scholar
  57. Swingedouw D, Mignot J, Labetoulle S, Guilyardi E, Madec G (2013) Initialisation and predictability of the AMOC over the last 50 years in a climate model. Clim Dyn 40(9–10):2381–2399CrossRefGoogle Scholar
  58. van Oldenborgh GJ, Doblas-Reyes FJ, Wouters B, Hazeleger W (2012) Decadal prediction skill in a multi-model ensemble. Clim Dyn 38(7–8):1263–1280CrossRefGoogle Scholar
  59. Vecchi GA, Msadek R, Anderson W et al (2013) Multi-year predictions of North Atlantic hurricane frequency: promise and limitations. J Clim. doi: 10.1175/JCLI-D-12-00464.1 Google Scholar
  60. Wouters B, Hazeleger W, Drijfhout S, Oldenborgh GJ, Guemas V (2013) Multiyear predictability of the North Atlantic subpolar gyre. Geophys Res Lett 40:3080–3084CrossRefGoogle Scholar
  61. Xue Y, Balmaseda MA, Boyer T et al (2012) A comparative analysis of upper-ocean heat content variability from an ensemble of operational ocean reanalyses. J Clim 25(20):6905–6929CrossRefGoogle Scholar
  62. Yeager S, Karspeck A, Danabasoglu G, Tribbia J, Teng H (2012) A decadal prediction case study: late twentieth-century North Atlantic ocean heat content. J Clim 25(15):5173–5189CrossRefGoogle Scholar
  63. Zhu J, Huang B, Balmaseda MA (2012) An ensemble estimation of the variability of upper-ocean heat content over the tropical Atlantic Ocean with multi-ocean reanalysis products. Clim Dyn 39(3–4):1001–1020CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Sulagna Ray
    • 1
  • Didier Swingedouw
    • 2
  • Juliette Mignot
    • 1
    • 3
    • 4
  • Eric Guilyardi
    • 1
    • 5
  1. 1.LOCEAN/IPSLSorbonne Universités, UPMC-CNRS-IRD-MNHNParis Cedex 05France
  2. 2.EPOCCNRS-University of BordeauxPessacFrance
  3. 3.Climate and Environmental Physics, Physics InstituteUniversity of BernBernSwitzerland
  4. 4.Oeschger Centre of Climate Change ResearchUniversity of BernBernSwitzerland
  5. 5.NCAS-ClimateUniversity of ReadingReadingUK

Personalised recommendations