Climate Dynamics

, Volume 44, Issue 1–2, pp 75–93 | Cite as

Eight-hundred years of summer temperature variations in the southeast of the Iberian Peninsula reconstructed from tree rings

  • Isabel Dorado LiñánEmail author
  • Eduardo Zorita
  • Jesús Fidel González-Rouco
  • Ingo Heinrich
  • Filipe Campello
  • Elena Muntán
  • Laia Andreu-Hayles
  • Emilia Gutiérrez


July-to-October temperature variations are reconstructed for the last 800 years based on tree-ring widths from the Cazorla Range. Annual tree-ring width at this site has been found to be negatively correlated with temperature of the previous summer. This relationship is genuine, metabolically plausible, and cannot be explained as an indirect correlation mediated by hydroclimate. The resulting reconstruction (NCZ Tjaso ) represents the southernmost annually resolved temperature record based on tree-rings in Europe and provides detailed information on the regional climate evolution during the Late Holocene in the southeast of the Iberian Peninsula. The tree-ring based temperature reconstruction of Cazorla Range reveals predominantly warm summer temperatures during the transition between the Medieval Climate Anomaly (MCA) and the Little Ice Age (LIA) from the 13th to the mid of the sixteenth century. The LIA spanned a slightly longer time (1500–1930 CE) than in other European summer temperature reconstructions from the Alps and Pyrenees. The twentieth century, though warmer than the preceding centuries, does not show unprecedented warmth in the last 800 years. Three ensembles of climate simulations conducted with two global atmosphere–ocean general circulation climate models (GCMs), considering different external forcings, were used for comparison: ECHO-G (Erik) and MPI-ESM (E1 and E2). Additionally, individual simulations were available from GCM included in the fifth Coupled Model Intercomparison Project, as well as single-forcing simulations performed with MPI-ESM. The comparison of the reconstructed and simulated temperatures revealed a close agreement of NCZ Tjaso with the simulations performed with total solar irradiance forcing with wider amplitude. Furthermore, the correlations with single-forcing simulations suggest volcanism as the main factor controlling preindustrial summer temperature variations in the Cazorla Range over the last five centuries. The persistent anti-correlation between NCZ Tjaso and simulated temperatures during the MCA–LIA transitional period underlines the current limitations for attributing temperature variations during that period to internal variability or external forcing.


Dendroclimatology Temperature reconstruction Climate models External forcing Cazorla Range 



We are very grateful to the collaborators from the Junta de Andalucía and Centro de Capacitación y Experimentación Forestal de Cazorla, especially to A. Benavente and P. A. Tíscar for their support to our research and help in the field all these years. We thank the anonymous reviewers for their constructive comments and valuable inputs. This research was funded by MILLENNIUM (017008-2).


  1. Alcoforado MJ, Fátima Nunes M, Garcia JC, Taborda JP (2000) Temperature and precipitation reconstruction in southern Portugal during the late Maunder Minimum (AD 1675–1715). Holocene 10(3):333–340CrossRefGoogle Scholar
  2. Andreu L, Gutiérrez E, Macias M, Ribas M, Bosch O, Camarero JJ (2007) Climate increases regional tree-growth variability in Iberian pine forests. Glob Change Biol 13:804–815Google Scholar
  3. Barriendos M (1997) Climatic variations in the Iberian Peninsula during the late Maunder Minimum (AD 1675-1715): an analysis of data from rogation ceremonies. Holocene 7(1):105–111CrossRefGoogle Scholar
  4. Barriendos M, Rodrigo FS (2006) Study of historical flood events on Spanish rivers using documentary data Study of historical flood events on Spanish rivers using documentary data. Hydrol Sci J 51:765–783CrossRefGoogle Scholar
  5. Battle M, Bender M, Sowers T, Tans PP, Butler JH, Elkins JW, Ellis JT, Conway T, Zhang N, Lang P, Clarke AD (1996) Atmospheric gas concentrations over the past century measured in air from firn at the South Pole. Nature 383:231–235CrossRefGoogle Scholar
  6. Bengtsson L, Hodges KI, Roeckner E, Brokopf R (2006) On the natural variability of the pre-industrial European climate. Clim Dyn 27:743–760CrossRefGoogle Scholar
  7. Boucher O, Pham M (2002) History of sulfate aerosol radiative forcings. Geophys Res Lett 29(9):1308CrossRefGoogle Scholar
  8. Bradley RS (2000) 1000 years of climate change. Science 288:1353–1354CrossRefGoogle Scholar
  9. Bretagnon P, Francou G (1988) Planetary theories in rectangular and spherical variables: VSOP 87 solutions. Astron Astrophys 202:309–315Google Scholar
  10. Briffa KR, Jones PD, Osborn TJ (1998) Influence of volcanic eruptions on Northern Hemisphere summer temperature over the past 600 years. Nature 393:450–455CrossRefGoogle Scholar
  11. Bullón T (2008) Winter temperatures in the second half of the sixteenth century in the central area of the Iberian Peninsula. Clim Past 4:357–367CrossRefGoogle Scholar
  12. Bunn A (2008) A dendrochronology program library in R (dplR). Dendrochronologia 26(2):115–124CrossRefGoogle Scholar
  13. Büntgen U, FrankD GH, Esper J (2008) Long-term summer temperature variations in the Pyrenees. Clim Dyn 31(6):615–631CrossRefGoogle Scholar
  14. Büntgen U, Tegel W, Nicolussi K, McCormick M, Frank D, Trouet V, Kaplan JO, Herzig F, Heussner KH, Wanner H, Luterbacher J, Esper J (2011) 2500 Years of European climate variability and human susceptibility. Science 331:578–583CrossRefGoogle Scholar
  15. Cook ER (1999) TurboARSTAN program and reference manual, V 2.0.7. Tree-ring Laboratory, Lamont-Doherty Earth Observatory, PalisadesGoogle Scholar
  16. Cook ER, Kairiukstis LA (1990) Methods of Dendrochronology: Applications in the Environmental Sciences. Kluwer Academic Publishers, DoredrechtCrossRefGoogle Scholar
  17. Cook ER, Briffa KR, Jones PD (1994) Spatial regression methods in dendroclimatology: a review and comparison of two techniques. Int J Climatolol 14:379–402CrossRefGoogle Scholar
  18. Corella JP, Moreno A, Morellón M, Rull V, Giralt S, Rico MT, Pérez-Sanz A, Valero-Garcés BL (2010) Climate and human impact on a meromictic lake during the last 6,000 years (Montcortès Lake, Central Pyrenees, Spain). J Paleolimnol 46(3):351–367CrossRefGoogle Scholar
  19. Creus Novau J (1998) A propósito de los árboles más viejos de la España Peninsular: los Pinus nigra Arnold subsp. salzmannii (Dunal) Franco. Montes 54:68–76Google Scholar
  20. Crowley TJ (2000) Causes of climate change over the past 1000 Years. Science 289(5477):270–277CrossRefGoogle Scholar
  21. Crowley TJ, Zielinski G, Vinther B, Udisti R, Kreutz K, Cole-Dai J, Castellano E (2008) Volcanism and the little ice age. PAGES News 16:22–23Google Scholar
  22. D’Arrigo R, Wilson R,  Tudhope A (2009) Impact of volcanic forcing on tropical climate during the past five centuries. Nat Geosci 2:51–56. doi: 10.1038/NGE0393 CrossRefGoogle Scholar
  23. Domínguez-Castro F, Santisteban JI, Barriendos M, Mediavilla R (2008) Reconstruction of drought episodes for central Spain from rogation ceremonies recorded at the Toledo Cathedral from 1506 to 1900: a methodological approach. Global Planet Change 63(2–3):230–242CrossRefGoogle Scholar
  24. Domínguez-Castro F, García-Herrera R, Ribera P, Barriendos M (2010) A shift in the spatial pattern of Iberian droughts during the 17th century. Clim Past 6(5):553–563CrossRefGoogle Scholar
  25. Dorado Liñán I, Gutiérrez E, Heinrich I, Andreu-Hayles L, Muntán E, Campelo F, Helle G (2011) Climate signals in width, density, δ13C and δ18O tree-ring series at two Iberian sites. TRACE 9:134–142Google Scholar
  26. Dorado Liñán I, Büntgen U, González-Rouco F, Zorita E, Montávez JP, Gómez-Navarro JJ, Brunet M, Heinrich I, Helle G, Gutiérrez E (2012) Estimating 750 years of temperature variations and uncertainties in the Pyrenees by tree-ring reconstructions and climate simulations. Clim Past 8(3):919–933CrossRefGoogle Scholar
  27. Dorado Liñán I, Gutiérrez E, Andreu-Hayles L, Heinrich I, Helle G (2013) Potential to explain climate from tree rings in the south of the Iberian Peninsula. Clim Res 55(2):119–134CrossRefGoogle Scholar
  28. Esper J, Cook ER, Schweingruber FH (2002) Low-frequency signals in long tree-ring chronologies and the reconstruction of past temperature variability. Science 295:2250–2253CrossRefGoogle Scholar
  29. Etheridge DM, Steele LP, Langenfelds RL, Francey RJ, Barnola JM, Morgan VI (1996) Natural and anthropogenic changes in atmospheric CO2 over the last 1000 years from air in Antarctic ice and firn. J Geophys Res 101:4115–4128CrossRefGoogle Scholar
  30. Etheridge DM, Steele LP, Francey RJ, Langenfields RL (1998) Atmospheric methane between 1000 A.D. and present: evidence of anthropogenic emissions and climatic variability. J Geophys Res 103:15979–15993CrossRefGoogle Scholar
  31. Fernández-Donado L, González-Rouco JF, Raible CC, Ammann CM, Barriopedro D, Garcia-Bustamante E, Jungclaus JH, Lorenz SJ, Luterbacher J, Phipps SJ, Servonnat J, Swingedouw D, Tett SFB, Wagner S, Yiou P, Zorita E (2013) Large-scale temperature response to external forcing in simulations and reconstructions of the last millennium. Clim Past 9:393–342Google Scholar
  32. Fischer EM, Luterbacher J, Zorita E, Tett SFB, Casty C, Wanner H (2007) European climate response to tropical volcanic eruptions over the last half millennium. Geophys Res Lett 34:L05707Google Scholar
  33. Fritts HC (1976) Tree Rings and Climate. Academic Press, New YorkGoogle Scholar
  34. Gao CC, Robock A, Ammann C (2008) Volcanic forcing of climate over the past 1500 years: an improved ice corebased index for climate models. J Geophys Res 113:D23111CrossRefGoogle Scholar
  35. Génova M (2012) Extreme pointer years in tree-ring records of Central Spain as evidence of climatic events and the eruption of the Huaynaputina Volcano (Peru, 1600 AD). Clim Past 8(2):751–764CrossRefGoogle Scholar
  36. Goldsmith JL (1995) The crisis of the late middle ages: the case of France. French History 9(4):417–450CrossRefGoogle Scholar
  37. Gonzalez-Rouco FJ, Fernandez-Donado L, Raible CC, Barriopedro D, Garcia-Herrera R, Luterbacher J, Jungclaus J, Swingedow D, Servonat J, Tett S, Brohan P, Zorita E, Wagner S, Amman C (2011) Medieval climate anomaly to little ice age transition as simulated by current climate models. PAGES News 19:7–8Google Scholar
  38. González-Rouco JF, Beltrami H, Zorita E, von Storch H (2006) Simulation and inversion of borehole temperature profiles in surrogate climates: spatial distribution and surface coupling. Geophys Res Lett 33:L024693CrossRefGoogle Scholar
  39. González-Rouco JF, Beltrami H, Zorita E, Stevens MB (2009) Borehole climatology: a discussion based on contributions from climate modeling. Clim Past 5:97–127CrossRefGoogle Scholar
  40. Graham NE, Ammann CM, Fleitmann D, Cobb KM, Luterbacher J (2011) Support for global climate reorganization during the “Medieval climate anomaly”. Clim Dyn 37:1217–1245CrossRefGoogle Scholar
  41. Guiot J, Nicault A, Rathgeber C, Edouard JL, Guibal F, Pichard G, Till C (2005) Last-millennium summer-temperature variations in Western Europe based on proxy data. Holocene 15:489–500CrossRefGoogle Scholar
  42. Guiot J, Corona C, ESCARSEL members (2010) Growing season temperatures in Europe and climate forcings over the past 1400 years. PLoS ONE 5(4):e9972CrossRefGoogle Scholar
  43. Harvey LP (1992) Islamic Spain 1250 to 1500. University of Chicago Press. ISBN 0-226-31962-8Google Scholar
  44. Hegerl G, Crowley T, Allen M, Hyde W, Pollack H, Smerdon J, Zorita E (2007) Detection of human influence on a new, validated 1500-year temperature reconstruction. J Clim 20:650–666CrossRefGoogle Scholar
  45. Hegerl G, Luterbacher J, Gonzalez-Rouco F, Tett SFB, Crowley T, Xoplaki E (2011) Influence of human and natural forcing on European seasonal temperatures. Nat Geosci 4:99–103CrossRefGoogle Scholar
  46. Heinrich I, Touchan R, Dorado Liñán I, Vos H, Helle G (2013) Winter-to-spring temperature dynamics in Turkey derived from tree rings since AD 1125. Clim Dyn 41:1685–1701CrossRefGoogle Scholar
  47. Heywood VH (1961) The flora of the sierra de cazorla, S.E, Spain. Feddes Rep 64:28–73Google Scholar
  48. Hind A, Moberg A (2013) Past millennial solar forcing magnitude. A statistical hemispheric-scale climate model versus proxy data comparison. Clim Dyn 41:2527–2537CrossRefGoogle Scholar
  49. Holmes RL (1983) Computer-assisted quality control in tree-ring dating and measurement. Tree-Ring Bull 43:69–78Google Scholar
  50. Jiménez de Cisneros C, Caballero E, Vera JA, Durán JJ, Julia R (2003) A record of Pleistocene climate from a stalactite, Nerja Cave, southern Spain. Palaeogeogr Palaeoclimatol Palaeoecol 189:1–10CrossRefGoogle Scholar
  51. Jones PD, Mann ME (2004) Climate over past millennia, Rev Geophys 42: RG2002Google Scholar
  52. Jones PD, Briffa KR, Barnett TP, Tett SFB (1998) High-resolution palaeoclimatic records for the last millennium: interpretation, integration and comparison with general circulation model control run temperatures. Holocene 8:477–483CrossRefGoogle Scholar
  53. Jones PD, Osborn TJ, Briffa KR (2001) The evolution of climate over the last millennium. Science 292(5517):662–667CrossRefGoogle Scholar
  54. Jones PD, Briffa KR, Osborn TJ, Lough JM, van Ommen TD, Vinther BM, Luterbacher J, Wahl ER, Zwiers FW, Mann ME, Schmidt GA, Ammann CM, Buckley BM, Cobb KM, Esper J, Goosse H, Graham N, Jansen E, Kiefer T, Kull C, Kuttel M, Mosley-Thompson E, Overpeck JT, Riedwyl N, Schulz M, Tudhope W, Villalba R, Wanner H, Wolff E, Xoplaki E (2009) High-resolution palaeoclimatology of the last millennium: a review of current status and future prospects. Holocene 19(1):3–49CrossRefGoogle Scholar
  55. Julià R, Burjachs F, Dasí MJ, Mezquita F, Miracle MR, Roca JR, Seret G, Vicente E (1998) Meromixis origin and recent trophic evolution in the Spanish mountain lake La Cruz. Aquat Sci 60(4):279CrossRefGoogle Scholar
  56. Jungclaus JH, Lorenz SJ, Timmreck C, Reick CH, Brovkin V, Six K, Segschneider J, Giorgetta MA, Crowley TJ, Pongratz J, Krivova NA, Vieira LE, Solanki SK, Klocke D, Botzet M, Esch M, Gayler V, Haak H, Raddatz TJ, Roeckner E, Schnur R, Widmann H, Claussen M, Stevens B, Marotzke J (2010) Climate and carbon-cycle variability over the last millennium. Clim Past 6:723–737CrossRefGoogle Scholar
  57. Keller CU, Schussler M, Vögler A, Zakharov V (2004) On the origin of solar faculae. Astrophys J 607:59–62CrossRefGoogle Scholar
  58. Krivova NA, Solanki S (2008) Models of solar irradiance variations: current status. J Astrophys Astron 29:51–158CrossRefGoogle Scholar
  59. Krivova NA, Balmaceda L, Solanki SK (2007) Reconstruction of solar total irradiance since 1700 from the surface magnetic flux. Astron Astrophys 346:335–346CrossRefGoogle Scholar
  60. Lamb H (1965) The early medieval warm epoch and its sequel. Palaeogeogr Palaeoclimatol Palaeoecol 1:13–37CrossRefGoogle Scholar
  61. Lamb HH (1977) Climate: present, past and future. Methuen, London, p 825Google Scholar
  62. Laredo Quesada MA (1979) Granada: historia de un país islámico (1232–1571), MadridGoogle Scholar
  63. Lean J (2000) Evolution of the sun’s spectral irradiance since the maunder minimum. Geophys Res Lett 27(16):2425–2428CrossRefGoogle Scholar
  64. Lefohn AS, Husar JD, Husar RB (1999) Estimating historical anthropogenic global sulfur emission patterns for the period 1850–1990. Atmos Environ 33:3435–3444CrossRefGoogle Scholar
  65. Legutke S, Voss R (1999) The hamburg atmosphere-ocean coupled circulation model ECHO-G. Technical report No 18, German Climate Computer Center (DKRZ), HamburgGoogle Scholar
  66. Leijonhufvud L, Wilson R, Moberg A, Söderberg J, Retsö D, Söderlind U (2010) Five centuries of Stockholm winter/spring temperatures reconstructed from documentary evidence and instrumental observations. Clim Change 101:109–141CrossRefGoogle Scholar
  67. Linares JC, Tíscar PA (2010) Climate change impacts and vulnerability of the southern populations of Pinus nigra subsp, Salzmannii. Tree Physiol 30(7):795–806CrossRefGoogle Scholar
  68. Luterbacher J, Dietrich D, Xoplaki E, Grosjean M, Wanner H (2004) European seasonal and annual temperature variability, trends, and extremes since 1500. Science 303:1499–1503CrossRefGoogle Scholar
  69. Luterbacher J, García-Herrera R, Akcer-Onc S, Allan R, Alvarez-Castro MC, Benito G, Booth J, Büntgen U, Cagatay N, Colombaroli D, Davis B, Esper J, Felis T, Fleitmann D, Frank D, Gallego D, Garcia-Bustamante, E, Glaser R, Gonzalez-Rouco JF, Goosse H, Kiefer T, Macklin MG, Manning SW, Montagna P, Newman L, Power MJ, Rath V, Ribera P, Riemann D, Roberts N, Sicre MA, Silenzi S, Tinner W, Tzedakis PC, Valero-Garcés B, van der Schriera G, Vannièrea B, Vogo S, Wannera H, Werner JP, Willett G, Williamsa MH, Xoplaki E, Zerefosa CS, Zorita E (2012) A review of 2000 years of paleoclimatic evidence in the mediterranean. The climate of the mediterranean region: from the past to the future. Elsevier, Amsterdam, The Netherlands, 87–185Google Scholar
  70. Mann ME, Bradley RS, Hughes MK (1998) Global-scale temperature patterns and climate forcing over the past six centuries. Nature 392:779–787CrossRefGoogle Scholar
  71. Mann ME, Bradley RS, Hughes MK (1999) Northern Hemisphere temperatures during the past millennium: inferences, uncertainties, and limitations. Geophys Res Lett 26:759–762CrossRefGoogle Scholar
  72. Mann ME, Zhang Z, Hughes MK, Bradley RS, Miller SK, Rutherford S, Ni F (2008) Proxy-based reconstructions of hemispheric and global surface temperature variations over the past two millennia. Proc Natl Acad Sci USA 105:13252–13257CrossRefGoogle Scholar
  73. Mann ME, Zhang Z, Rutherford S, Bradley RS, Hughes MK, Shindell D, Ammann C, Faluvegi G, Fenbiao N (2009) Global signatures and dynamical origins of the little ice age and medieval climate anomaly. Science 326(5957):1256–1260CrossRefGoogle Scholar
  74. Marsland SJ, Haak H, Jungclaus JH, Latif M, Roeske F (2003) The Max Planck Institute global ocean/sea ice model with orthogonal curvilinear coordinates. Ocean Model 5:91–127CrossRefGoogle Scholar
  75. Martín-Benito D, Cherubini P, Río M, Cañellas I (2007) Growth response to climate and drought in Pinus nigra Arn. Trees of different crown classes, Trees 22(3): 363–373Google Scholar
  76. Martín-Chivelet J, Muñoz-García MB, Edwards RL, Turrero MJ, Ortega AI (2011) Land surface temperature changes in Northern Iberia since 4000yrBP, based on δ13C of speleothems. Global Planet Change 77(1–2):1–12CrossRefGoogle Scholar
  77. Martín-Puertas C, Jiménez-Espejo F, Martínez-Ruiz F, Nieto-Moreno V, Rodrigo M, Mata MP, Valero-Garcés BL (2010) Late Holocene climate variability in the southwestern Mediterranean region: an integrated marine and terrestrial geochemical approach. Clim Past 6(6):807–816CrossRefGoogle Scholar
  78. Martín-Vide J, Lopez-Bustins JA (2006) The western mediterranean oscillation and rainfall in the Iberian Peninsula. Int J Climatol 26:1455–1475CrossRefGoogle Scholar
  79. Morellón M, Pérez-Sanz A, Corella JP, Büntgen U, Catalán J, González-Sampériz P, González-Trueba JJ, López-Sáez JA, Moreno A, Pla-Rabes S, Saz-Sánchez MA, Scussolini P, Serrano E, Steinhilber F, Stefanova V, Vegas-Vilarrúbia T, Valero-Garcés B (2012) A multi-proxy perspective on millennium-long climate variability in the Southern Pyrenees. Clim Past 8(2):683–700CrossRefGoogle Scholar
  80. Moreno A, Valero-Garcés BL, González-Sampériz P, Rico M (2008) Flood response to rainfall variability during the last 2000 years inferred from the Taravilla Lake record (Central Iberian Range, Spain). J Paleolimnol 40(3):943–961CrossRefGoogle Scholar
  81. Moreno A, Stoll H, Cacho I (2010) A speleothem record of glacial (25–11. 6 kyr BP) rapid climatic changes from northern Iberian Peninsula. Global Planet Change 71(3):218–231CrossRefGoogle Scholar
  82. Moreno A, Morellon M, Martín-Puertas C, Frigola J, Canals M, Cacho I, Corella JP, Perez A, Belmonte A, Vegas-Vilarrúbia T, González-Sampériz P, Valero-Garcés BL (2011) Was there a common hydrological pattern in the Iberian Peninsula region during the Medieval Climate Anomaly? PAGES News 19:16–18Google Scholar
  83. PAGES 2 k Consortium (2013) Continental-scale temperature variability during the past two millennia. Nat Geosci 6:339–346CrossRefGoogle Scholar
  84. Panofsky HA, Brier GW (1958) Some Applications of Statistics to Meteorology. Pa. State Univ. Press, University ParkGoogle Scholar
  85. Pla S, Catalan J (2004) Chrysophyte cysts from lake sediments reveal the submillennial winter/spring climate variability in the northwestern Mediterranean region throughout the Holocene. Clim Dyn 24(2–3):263–278Google Scholar
  86. Pongratz J, Reick C, Raddatz T, Claussen M (2008) A reconstruction of global agricultural areas and land cover for the last millennium, Global Biogeochem Cycles 22: GB3018Google Scholar
  87. Pongratz J, Raddatz T, Reick CH, Esch M, Claussen M (2009) Radiative forcing from anthropogenic land cover change since A.D. 800. Geophys Res Lett 36:L02709CrossRefGoogle Scholar
  88. Pongratz J, Reick CH, Raddatz T, Claussen M (2010) Biogeophysical versus biogeochemical climate response to historical anthropogenic land cover change. Geophys Res Lett 37(8):L08702CrossRefGoogle Scholar
  89. Raddatz TJ, Reick CH, Knorr W, Kattge J, Roeckner E, Schnur R, Schnitzler KG, Wetzel P, Jungclaus J (2007) Will the tropical land biosphere dominate the climate-carbon feedback during the twenty-first century? Clim Dyn 29:565–574CrossRefGoogle Scholar
  90. Riera S, Wansard G, Julià R (2004) 2000-year environmental history of a karstic lake in the mediterranean Pre-Pyrenees: the Estanya lakes (Spain). Catena 55(3):293–324CrossRefGoogle Scholar
  91. Rivas-Martínez S (1983) Pisos bioclimáticos de España. Lazaroa 5:33–43Google Scholar
  92. Rodrigo FS, Barriendos M (2008) Reconstruction of seasonal and annual rainfall variability in the Iberian peninsula (16th–20th centuries) from documentary data. Global Planet Change 63(2–3):243–257CrossRefGoogle Scholar
  93. Rodrigo FS, Esteban-Parra MJ, Castro-Diez Y (1998) On the use of the Jesuit order private correspondence records in climate reconstructions: a case study from Castille (Spain) from 1634 to 1658 A.D. Clim Change 40:625–645CrossRefGoogle Scholar
  94. Rodrigo FS, Esteban-Parra MJ, Pozo-Vázquez D, Castro-Díez Y (1999) A 500-year precipitation record in Southern Spain. Int J Climatol 19(11):1233–1253CrossRefGoogle Scholar
  95. Rodrigo FS, Gómez-Navarro JJ, Montávez Gómez JP (2012) Climate variability in Andalusia (southern Spain) during the period 1701–1850 based on documentary sources: evaluation and comparison with climate model simulations. Clim Past 8(1):117–133CrossRefGoogle Scholar
  96. Roeckner E, Bäuml G, Bonaventura L, Brokopf R, Esch MG, Hagemann S, Kirchner I, Kornblueh L, Manzini E, Rhodin A, Schlese U, Schulzweida U, Tompkins A (2003) The atmospheric general circulation model ECHAM5. Part I: Model description, Tech. Rep. Rep. 349, 127 pp., Max Planck Institute for Meteorology, available from MPI for Meteorology, Bundesstr. 53, 20146 Hamburg, GermanyGoogle Scholar
  97. Romero-Viana L, Julià R, Schimmel M, Camacho A, Vicente E, Miracle MR (2011) Reconstruction of annual winter rainfall since A.D.1579 in central-eastern Spain based on calcite laminated sediment from Lake La Cruz. Clim Change 107(3–4):343–361CrossRefGoogle Scholar
  98. Schmidt GA, Jungclaus JH, Ammann CM, Bard E, Braconnot P, Crowley TJ, Delaygue G, Joos F, Krivova NA, Muscheler R, Otto-Bliesner BL, Pongratz J, Shindell DT, Solanki SK, Steinhilber F, Vieira LEA (2012) Climate forcing reconstructions for use in PMIP simulations of the last millennium (v1.1). Geosci Model Dev 5(1):185–191CrossRefGoogle Scholar
  99. Schmidt GA, Annan JD, Bartlein PJ, Cook BI, Guilyardi E, Hargreaves JC, Harrison SP, Kageyama M, LeGrande AN, Konecky B, Lovejoy S, Mann ME, Masson-Delmotte V, Risi C, Thompson D, Timmermann A, Tremblay LB, Yiou P (2013) Using paleo-climate comparisons to constrain future projections in CMIP5. Clim Discuss 9:775–835CrossRefGoogle Scholar
  100. Seager R, Burgman R (2011) Medieval hydroclimate revisited. PAGES News 19:10–11Google Scholar
  101. Shapiro AI, Schmutz W, Rozanov E, Schoell M, Haberreiter M, Shapiro AV, Nyeki S (2011) A new approach to long-term reconstruction of the solar irradiance leads to large historical solar forcing. Astron Astrophys 529:A67Google Scholar
  102. Steinhilber F, Beer J, Frohlich C (2009) Total solar irradiance during the Holocene. Geophys Res Lett 36:L19704. doi: 10.1029/2009GL040142
  103. Stine S (1994) Extreme and persistent drought in California and Patagonia during medieval time. Nature 369:546–549CrossRefGoogle Scholar
  104. Stokes MA, Smiley TL (1968) An introduction to Tree-ring dating. University Arizona Press, TusconGoogle Scholar
  105. Trouet V, Esper J, Graham NE, Baker A, Scourse JD, Frank DC (2009) Persistent positive North Atlantic Oscillation mode dominated the medieval climate anomaly. Science 324:78–80CrossRefGoogle Scholar
  106. Trouet V, Scourse JD, Raible CC (2012) North Atlantic storminess and Atlantic Meridional overturning circulation in the last millennium: reconciling contradictory proxy records of NAO variability. Global Planet Change 84–85:48–55CrossRefGoogle Scholar
  107. Valdeón Baruque J (2002) Pedro I el Cruel y Enrique de Trastámara: ¿la primera guerra civil española? AguilarGoogle Scholar
  108. van Geel B, Raspopov OM, Renssen H, van der Plicht J, Dergachev V, Meijer HJ (1999) The role of solar forcing upon climate change. Quatern Sci Rev 18(3):331–338CrossRefGoogle Scholar
  109. van Oldenborgh GJ, Balmaseda MA, Ferranti L, Stockdale TN, Anderson DLT (2004) Evaluation of atmospheric fields from the ECMWF seasonal forecasts over a 15 year period. J Clim 16:2970–2989Google Scholar
  110. Vicente-Serrano SM, Cuadrat-Prats JM (2006) Trends in drought intensity and variability in the middle Ebro valley (NE of the Iberian Peninsula) during the second half of the twentieth century. Theoret Appl Climatol 88(3–4):247–258Google Scholar
  111. Wetzel P, Maier-Reimer E, Botzet M, Jungclaus JH, Keenlyside N, Latif M (2006) Effects of ocean biology on the penetrative radiation on a coupled climate model. J Clim 19:3973–3987CrossRefGoogle Scholar
  112. Wigley TML, Briffa KR, Jones PD (1984) On the average value of correlated time series, with applications in dendroclimatology and hydrometeorology. Am Meteorol Soc 23:201–213Google Scholar
  113. Zorita E, González-Rouco JF, von Storch V, Montávez JP, Valero F (2005) Natural and anthropogenic modes of surface temperature variations in the last thousand years. Geophys Res Lett 32:L08707CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Isabel Dorado Liñán
    • 1
    Email author
  • Eduardo Zorita
    • 3
  • Jesús Fidel González-Rouco
    • 4
  • Ingo Heinrich
    • 5
  • Filipe Campello
    • 6
  • Elena Muntán
    • 2
  • Laia Andreu-Hayles
    • 7
  • Emilia Gutiérrez
    • 2
  1. 1.Chair of EcoclimatologyTechnische Universität MünchenMunichGermany
  2. 2.Departament d’EcologiaUniversitat de BarcelonaBarcelonaSpain
  3. 3.Institute for Coastal ResearchHelmholtz-Zentrum-GeesthachtGeesthachtGermany
  4. 4.Departamento de Física de la Tierra, Astronomía y Astrofísica II, Instituto de Geociencias UCM-CSICUniversidad Complutense de MadridMadridSpain
  5. 5.German Centre for Geosciences, Climate Dynamics and Landscape EvolutionHelmholtz Centre PotsdamPotsdamGermany
  6. 6.Departamento de Ciências da Vida, Centro de Ecologia FuncionalUniversidad de CoimbraCoimbraPortugal
  7. 7.Tree-Ring LaboratoryLamont-Doherty Earth Observatory of Columbia UniversityPalisadesUSA

Personalised recommendations