Climate Dynamics

, Volume 45, Issue 1–2, pp 21–45 | Cite as

Precipitation in the Karakoram-Himalaya: a CMIP5 view

  • Elisa PalazziEmail author
  • Jost von Hardenberg
  • Silvia Terzago
  • Antonello Provenzale


This work analyzes the properties of precipitation in the Hindu-Kush Karakoram Himalaya region as simulated by thirty-two state-of-the-art global climate models participating in the Coupled Model Intercomparison Project phase 5 (CMIP5). We separately consider the Hindu-Kush Karakoram (HKK) in the west and the Himalaya in the east. These two regions are characterized by different precipitation climatologies, which are associated with different circulation patterns. Historical model simulations are compared with the Climate Research Unit (CRU) and Global Precipitation Climatology Centre (GPCC) precipitation data in the period 1901–2005. Future precipitation is analyzed for the two representative concentration pathways (RCP) RCP 4.5 and RCP 8.5 scenarios. We find that the multi-model ensemble mean and most individual models exhibit a wet bias with respect to CRU and GPCC observations in both regions and for all seasons. The models differ greatly in the seasonal climatology of precipitation which they reproduce in the HKK. The CMIP5 models predict wetter future conditions in the Himalaya in summer, with a gradual precipitation increase throughout the 21st century. Wetter summer future conditions are also predicted by most models in the RCP 8.5 scenario for the HKK, while on average no significant change can be detected in winter precipitation for both regions. In general, no single model (or group of models) emerges as that providing the best results for all the statistics considered, and the large spread in the behavior of individual models suggests to consider multi-model ensemble means with extreme care.


CMIP5 models Precipitation change Himalaya-Karakoram Model uncertainty 



This work was supported by the Project of Interest NextData (, funded by the Italian Ministry of Education, University and Research. We acknowledge the World Climate Research Programme’s Working Group on Coupled Modelling, which is responsible for CMIP, and we thank the climate modeling groups (listed in Table 1 of this paper) for producing and making available their model output. For CMIP the U.S. Department of Energy’s Program for climate model diagnosis and intercomparison provides coordinating support and led development of software infrastructure in partnership with the Global Organization for Earth System Science Portals. We thank the two anonymous reviewers for their comments which helped to significantly improve the paper.


  1. Akhtar M, Ahmad N, Booij M (2008) The impact of climate change on the water resources of Hindukush–Karakorum–Himalaya region under different glacier coverage scenarios. J Hydrol 355:148–163. doi: 10.1016/j.jhydrol.2008.03.015 CrossRefGoogle Scholar
  2. Arakawa A, Schubert WH (1974) Interaction of a cumulus cloud ensemble with the large-scale environment, Part I. J Atmos Sci 31:674–701. doi: 10.1175/1520-0469(1974)031<0674:IOACCE>2.0.CO;2 CrossRefGoogle Scholar
  3. Arakawa A (2004) The cumulus parameterization problem: past, present and future. J Clim 17:2493–2525. doi: 10.1175/1520-0442(2004)017<2493:RATCPP>2.0.CO;2 CrossRefGoogle Scholar
  4. Archer DR, Fowler HJ (2004) Spatial and temporal variations in precipitation in the upper Indus basin, global teleconnections and hydrological implications. Hydrol Earth Syst Sci 8:47–61. doi: 10.5194/hess-8-47-2004 CrossRefGoogle Scholar
  5. Archer DR, Fowler HJ (2008) Using meteorological data to forecast seasonal runoff on the River Jhelum, Pakistan. J Hydrol 361:10–23. doi: 10.1016/j.jhydrol.2008.07.017 CrossRefGoogle Scholar
  6. Arora VK, Scinocca JF, Boer GJ, Christian JR, Denman KL, Flato GM, Kharin VV, Lee WG, Merryfield WJ (2011) Carbon emission limits required to satisfy future representative concentration pathways of greenhouse gases. Geophys Res Lett 38:L05805. doi: 10.1029/2010GL046270 Google Scholar
  7. Becker A, Finger P, Meyer-Christoffer A, Rudolf B, Schamm K, Schneider U, Ziese M (2013) A description of the global land-surface precipitation data products of the Global Precipitation Climatology Centre with sample applications including centennial (trend) analysis from 1901-present. Earth Syst Sci Data 5:71–99. doi: 10.5194/essd-5-71-2013 CrossRefGoogle Scholar
  8. Bellouin N, Rae J, Jones A, Johnson C, Haywood J, Boucher O (2011) Aerosol forcing in the climate model intercomparison project (CMIP5) simulations by HadGEM2-ES and the role of ammonium nitrate. J Geophys Res 116:D20206. doi: 10.1029/2011JD016074 CrossRefGoogle Scholar
  9. Bentsen M, Bethke I, Debernard JB, Iversen T, Kirkevåg A, Seland Ø, Drange H, Roelandt C, Seierstad IA, Hoose C, Kristjánsson JE (2013) The Norwegian earth system model, NorESM1-M-Part 1: description and basic evaluation of the physical climate. Geosci Model Dev 6:687–720. doi: 10.5194/gmd-6-687-2013 CrossRefGoogle Scholar
  10. Betts AK (1986) A new convective adjustment scheme. Part I: observational and theoretical basis. Q J R Meteorol Soc 112:677–691. doi: 10.1002/qj.49711247307 Google Scholar
  11. Bi D, Dix M, Marsland S, O’Farrell S, Rashid H, Uotila P, Hirst A, Kowalczyk E, Golebiewski M, Sullivan A, Yan H, Hannah N, Franklin C, Sun Z, Vohralik P, Watterson I, Zhou X, Fiedler R, Collier M, Ma Y, Noonan J, Stevens L, Uhe P, Zhu H, Griffies S, Hill R, Harris C, Puri K (2013) The ACCESS coupled model: description, control climate and evaluation. Aust Meteorol Oceanogr J 63:41–64Google Scholar
  12. Bond TC, Bhardwaj E, Dong R, Jogani R, Jung S, Roden C, Streets DG, Trautmann NM (2007) Historical emissions of black and organic carbon aerosol from energy-related combustion, 1850–2000. Global Biogeochem Cycle 21:GB2018. doi: 10.1029/2006GB002840 Google Scholar
  13. Christensen JH, Hewitson B, Busuioc A, Chen A, Gao X, Held I, Held R, Kolli K, Kwon W-T, Laprise R, Magaña Rueda V, Mearns L, Menéndez CG, Räisänen J, Rinke A, Sarr A, Whetton P (2007) Regional climate projections. In: Climate change 2007. The physical science basis. Contribution of WGI to the IPCC AR4. Cambridge University PressGoogle Scholar
  14. Ciccarelli N, von Hardenberg J, Provenzale A, Ronchi C, Vargiu A, Pelosini R (2008) Climate variability in north-western Italy during the second half of the 20th century. Global Planet Change 63:185–195. doi: 10.1016/j.gloplacha.2008.03.006 CrossRefGoogle Scholar
  15. CRU (University of East Anglia Climatic Research Unit): Phil Jones, Ian Harris: Time-Series (TS) Version 3.21 of High Resolution Gridded Data of Month-by-month Variation in Climate (Jan. 1901 - Dec. 2012), (Internet), NCAS British Atmospheric Data Centre, 2013, Date of citation. doi: 10.5285/D0E1585D-3417-485F-87AE-4FCECF10A992
  16. Davini P, Cagnazzo C, Fogli PG, Manzini E, Gualdi S, Navarra A (2013) European blocking and Atlantic jet stream variability in the NCEP/NCAR reanalysis and the CMCC-CMS climate model. Clim Dyn. doi: 10.1007/s00382-013-1873-y
  17. Delworth TL, Broccoli AJ, Rosati A, Stouffer RJ, Balaji V, Beesley JA, Cooke WF, Dixon K, Dunne J, Dunne KA, Durachta JW, Findell KL, Ginoux P, Gnanadesikan A, Gordon CT, Griffies SM, Gudgel R, Harrison MJ, Held IM, Hemler RS, Horowitz LW, Klein SA, Knutson TR, Kushner PJ, Langenhorst AR, Lee HC, Lin SJ, Lu J, Malyshev SL, Milly PCD, Ramaswamy V, Russell J, Schwarzkopf MD, Shevliakova E, Sirutis JJ, Spelman MJ, Stern WF, Winton M, Wittenberg AT, Wyman B, Zeng F, Zhang R (2006) GFDL’s CM2 global coupled climate models. Part I: formulation and simulation characteristics. J Clim 19:643–674. doi: 10.1175/JCLI3629.1 CrossRefGoogle Scholar
  18. Dimri AP (2012) Atmospheric water budget over the western Himalayas in a regional climate model. J Earth Syst Sci 121:963–973. doi: 10.1007/s12040-012-0204-8 CrossRefGoogle Scholar
  19. Donner LJ (1993) A cumulus parameterization including mass fluxes, vertical momentum dynamics, and mesoscale effects. J Atmos Sci 50:889–906. doi: 10.1175/1520-0469(1993)050<0889:ACPIMF>2.0.CO;2 CrossRefGoogle Scholar
  20. Emanuel K (1994) Atmospheric convection. Oxford University Press, Oxford, p 580Google Scholar
  21. Fowler HJ, Archer DR (2006) Conflicting signals of climatic change in the upper Indus basin. J Clim 19:4276–4293. doi: 10.1175/JCLI3860.1 CrossRefGoogle Scholar
  22. Gao X, Zhao Z, Ding Y, Huang R, Giorgi F (2001) Climate change due to greenhouse effects in China as simulated by a regional climate model. Adv Atmos Sci 18:1224–1230. doi: 10.1007/s00376-001-0036-y CrossRefGoogle Scholar
  23. Gao X, Shi Y, Song R, Giorgi F, Wang Y, Zhang D (2008) Reduction of future monsoon precipitation over China: comparison between a high resolution RCM simulation and the driving GCM. Meteorol Atmos Phys 100:73–86. doi: 10.1007/s00703-008-0296-5 CrossRefGoogle Scholar
  24. Giorgetta MA, Jungclaus J, Reick C, Legutke S, Bader J, Bttinger M, Brovkin V, Crueger T, Esch M, Fieg K, Glushak K, Gayler V, Haak H, Hollweg HD, Ilyina T, Kinne S, Kornblueh L, Matei D, Mauritsen T, Mikolajewicz U, Mueller W, Notz D, Pithan F, Raddatz T, Rast S, Redler R, Roeckner E, Schmidt H, Schnur R, Segschneider J, Six KD, Stockhause M, Timmreck C, Wegner J, Widmann H, Wieners KH, Claussen M, Marotzke J, Stevens B (2013) Climate and carbon cycle changes from 1850 to 2100 in MPI-ESM simulations for the coupled model intercomparison project phase 5. J Adv Model Earth Syst 5:572–597. doi: 10.1002/jame.20038 CrossRefGoogle Scholar
  25. Gregory D, Rowntree P (1990) A mass flux convection scheme with representation of cloud ensemble characteristics and stability-dependent closures. Mon Weather Rev 118:1483–1506. doi: 10.1175/1520-0493(1990)118<1483:AMFCSW>2.0.CO;2 CrossRefGoogle Scholar
  26. Hasson S, Lucarini V, Pascale S (2013) Hydrological cycle over South and Southeast Asian river basins as simulated by PCMDI/CMIP3 experiments. Earth Syst Dyn 4:199–217. doi: 10.5194/esd-4-199-2013 CrossRefGoogle Scholar
  27. Hasson S, Lucarini V, Pascale S, Böhner J (2014) Seasonality of the hydrological cycle in major South and Southeast Asian river basins as simulated by PCMDI/CMIP3 experiments. Earth Syst Dyn 5:67–87. doi: 10.5194/esd-5-67-2014 CrossRefGoogle Scholar
  28. Hazeleger W, Wang X, Severijns C, Stefănescu S, Bintanja R, Sterl A, Wyser K, Semmler T, Yang S, van den Hurk B, van Noije T, van der Linden E, van der Wiel K (2012) EC-Earth v2.2: description and validation of a new seamless earth system prediction model. Clim Dyn 39:2611–2629. doi: 10.1007/s00382-011-1228-5 CrossRefGoogle Scholar
  29. Hewitt K (2005) The Karakoram anomaly? Glacier expansion and the ‘elevation effect’, Karakoram Himalaya. Mt Res Dev 25:332–340. doi: 10.1659/0276-4741(2005)025[0332:TKAGEA]2.0.CO;2
  30. Hewitt K (2011) Glacier change, concentration, and elevation effects in the Karakoram Himalaya, upper Indus basin. Mt Res Dev 31:188–200. doi: 10.1659/MRD-JOURNAL-D-11-00020.1 CrossRefGoogle Scholar
  31. Hourdin F, Foujols MA, Codron F, Guemas V, Dufresne JL, Bony S, Denvil S, Guez L, Lott F, Ghattas J, Braconnot P, Marti O, Meurdesoif Y, Bopp L (2013) Impact of the LMDZ atmospheric grid configuration on the climate and sensitivity of the IPSL-CM5A coupled model. Clim Dyn 40:2167–2192. doi: 10.1007/s00382-012-1411-3 CrossRefGoogle Scholar
  32. Huffman GJ, Adler RF, Bolvin DT, Gu G (2009) Improving the global precipitation record: GPCP version 2.1. Geophys Res Lett 36:L17808. doi: 10.1029/2009GL040000 CrossRefGoogle Scholar
  33. Hurrell JW, Holland MM, Gent PR, Ghan S, Kay JE, Kushner PJ, Lamarque JF, Large WG, Lawrence D, Lindsay K, Lipscomb WH, Long MC, Mahowald N, Marsh DR, Neale RB, Rasch P, Vavrus S, Vertenstein M, Bader D, Collins WD, Hack JJ, Kiehl J, Marshall S (2013) The community earth system model: a framework for collaborative research. Bull Am Meteorol Soc 94:1339–1360. doi: 10.1175/BAMS-D-12-00121.1 CrossRefGoogle Scholar
  34. IPCC, 2013: Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Stocker TF, Qin D, Plattner G-K, Tignor M, Allen SK, Boschung J, Nauels A, Xia Y, Bex V, and Midgley PM (eds.) Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, 1535 pp.Google Scholar
  35. Johnson SC (1967) Hierarchical clustering schemes. Psychometrika 32:241–254. doi: 10.1007/BF02289588 CrossRefGoogle Scholar
  36. Junker C, Liousse C (2008) A global emission inventory of carbonaceous aerosol from historic records of fossil fuel and biofuel consumption for the period 1860–1997. Atmos Chem Phys 8:1195–1207. doi: 10.5194/acp-8-1195-2008 CrossRefGoogle Scholar
  37. Kaufman YJ, Fraser RS (1997) The effect of smoke particles on clouds and climate forcing. Science 277:1636–1639. doi: 10.1126/science.277.5332.1636 CrossRefGoogle Scholar
  38. Kain JS, Fritsch JM (1990) A one-dimensional entraining/ detraining plume model and its application in convective parameterization. J Atmos Sci 47:2784–2802. doi: 10.1175/1520-0469(1990)047<2784:AODEPM>2.0.CO;2 CrossRefGoogle Scholar
  39. Knutti R, Masson D, Gettelman A (2013) Climate model genealogy: generation CMIP5 and how we got there. Geophys Res Lett 40:1194–1199. doi: 10.1002/grl.50256 CrossRefGoogle Scholar
  40. Kripalani RH, Oh JH, Kulkarni A, Sabade SS, Chaudhari HS (2007) South Asian summer monsoon precipitation variability: coupled climate model simulations and projections under IPCC AR4. Theor Appl Climatol 90:133–159. doi: 10.1007/s00704-006-0282-0 CrossRefGoogle Scholar
  41. Kuo HL (1965) On formation and intensification of tropical cyclones through latent heat release by cumulus convection. J Atmos Sci 22:40–63. doi: 10.1175/1520-0469(1965)022<0040:OFAIOT>2.0.CO;2 CrossRefGoogle Scholar
  42. Kuo HL (1974) Further studies of the parameterization of the influence of cumulus convection on large-scale flow. J Atmos Sci 31:1232–1240. doi: 10.1175/1520-0469(1974)031<1232:FSOTPO>2.0.CO;2 CrossRefGoogle Scholar
  43. Lal M, Meehl GA, Arblaster JM (2000) Simulation of Indian summer monsoon rainfall and its intraseasonal variability in the NCAR climate system model. Reg Environ Change 1:163–179. doi: 10.1007/s101130000017 CrossRefGoogle Scholar
  44. Lamarque JF, Bond TC, Eyring V, Granier C, Heil A, Klimont Z, Lee D, Liousse C, Mieville A, Owen B, Schultz MG, Shindell D, Smith SJ, Stehfest E, Aardenne JV, Cooper OR, Kainuma M, Mahowald N, McConnell JR, Naik V, Riahi K, van Vuuren DP (2010) Historical (1850–2000) gridded anthropogenic and biomass burning emissions of reactive gases and aerosols: methodology and application. Atmos Chem Phys 10:7017–7030. doi: 10.5194/acp-10-7017-2010 CrossRefGoogle Scholar
  45. Lee JY, Wang B, Kang IS, Shukla J, Kumar A, Kug JS, Schemm JKE, Luo JJ, Yamagata T, Fu X, Alves O, Stern B, Rosati T, Park CK (2010) How are seasonal prediction skills related to models’ performance on mean state and annual cycle? Clim Dyn 35:183–267. doi: 10.1007/s00382-010-0857-4 CrossRefGoogle Scholar
  46. Li L, Lin P, Yu Y, Wang B, Zhou T, Liu L, Liu J, Bao Q, Xu S, Huang W, Xia K, Pu Y, Dong L, Shen S, Liu Y, Hu N, Liu M, Sun W, Shi X, Zheng W, Wu B, Song M, Liu H, Zhang X, Wu G, Xue W, Huang X, Yang G, Song Z, Qiao F (2013) The flexible global ocean–atmosphere–land system model: Grid-point Version 2: FGOALS-g2. Adv Atmos Sci 30:543–560. doi: 10.1007/s00376-012-2140-6 CrossRefGoogle Scholar
  47. Manabe S, Strickler RF (1964) Thermal equilibrium of the atmosphere with a convective adjustment. J Atmos Sci 21:361–385. doi: 10.1175/1520-0469(1964)021<0361:TEOTAW>2.0.CO;2 CrossRefGoogle Scholar
  48. Mardia KV, Kent JT, Bibby JM (1979) Multivariate analysis. Probability and mathematical statistics. Academic Press, WalthamGoogle Scholar
  49. Martin GM, Bellouin N, Collins WJ, Culverwell ID, Halloran PR, Hardiman SC, Hinton TJ, Jones CD, McDonald RE, McLaren AJ, O’Connor FM, Roberts MJ, Rodriguez JM, Woodward S, Best MJ, Brooks ME, Brown AR, Butchart N, Dearden C, Derbyshire SH, Dharssi I, Doutriaux-Boucher M, Edwards JM, Falloon PD, Gedney N, Gray LJ, Hewitt HT, Hobson M, Huddleston MR, Hughes J, Ineson S, Ingram WJ, James PM, Johns TC, Johnson CE, Jones A, Jones CP, Joshi MM, Keen AB, Liddicoat S, Lock AP, Maidens AV, Manners JC, Milton SF, Rae JGL, Ridley JK, Sellar A, Senior CA, Totterdell IJ, Verhoef A, Vidale PL, Wiltshire A (2011) The HadGEM2 family of met office unified model climate configurations. Geosci Model Dev 4:723–757. doi: 10.5194/gmd-4-723-2011 CrossRefGoogle Scholar
  50. Masson D, Knutti R (2011) Climate model genealogy. Geophys Res Lett 38:L08703. doi: 10.1029/2011GL046864 Google Scholar
  51. Mauritsen T, Stevens B, Roeckner E, Crueger T, Esch M, Giorgetta M, Haak H, Jungclaus J, Klocke D, Matei D, Mikolajewicz U, Notz D, Pincus R, Schmidt H, Tomassini L (2012) he WCRP CMIP3 multimodel dataset: tuning the climate of a global model. J Adv Model Earth Syst 4:M00A01. doi: 10.1029/2012MS000154 CrossRefGoogle Scholar
  52. Meehl GA, Covey C, Taylor KE, Delworth T, Stouffer RJ, Latif M, McAvaney B, Mitchell JFB (2007) The WCRP CMIP3 multimodel dataset: a new era in climate change research. Bull Am Meteorol Soc 88:1383–1394. doi: 10.1175/BAMS-88-9-1383 CrossRefGoogle Scholar
  53. Meehl GA, Washington WM, Arblaster JM, Hu A, Teng H, Tebaldi C, Strand WG, White JB III (2012) Climate system response to external forcings and climate change projections in CCSM4. J Clim 25:3661–3683. doi: 10.1175/JCLI-D-11-00240.1 CrossRefGoogle Scholar
  54. Mehran A, AghaKouchak A, Phillips TJ (2014) Evaluation of CMIP5 continental precipitation simulations relative to satellite-based gauge-adjusted observations. J Geophys Res Atmos 119:1695–1707. doi: 10.1002/2013JD021152 CrossRefGoogle Scholar
  55. Mieville A, Granier C, Lioussee C, Guillaume B, Mouillot F, Lamarque JF, Grégoire JM, Pétrond G (2010) Emissions of gases and particles from biomass burning using satellite data and an historical reconstruction. Atmos Environ 44:1469–1477. doi: 10.1016/j.atmosenv.2010.01.011 CrossRefGoogle Scholar
  56. Moss RH, Edmonds JA, Hibbard KA, Manning MR, Rose SK, van Vuuren DP, Carter TR, Emori S, Kainuma M, Kram T, Meehl GA, Mitchell JFB, Nakicenovic N, Riahi K, Smith SJ, Stouffer RJ, Thomson AM, Weyant JP, Wilbanks TJ (2010) The next generation of scenarios for climate change research and assessment. Nature 463:747–756. doi: 10.1038/nature08823 CrossRefGoogle Scholar
  57. New M, Hulme M, Jones PD (1999) Representing twentieth century space-time climate variability. Part 1: development of a 1961–90 mean monthly terrestrial climatology. J Clim 12:829–856. doi: 10.1175/1520-0442(1999)012<0829:RTCSTC>2.0.CO;2 CrossRefGoogle Scholar
  58. New M, Hulme M, Jones PD (2000) Representing twentieth century space-time climate variability. Part 2: development of 1901–96 monthly grids of terrestrial surface climate. J Clim 13:2217–2238. doi: 10.1175/1520-0442(2000)013<2217:RTCSTC>2.0.CO;2 CrossRefGoogle Scholar
  59. Pal JS et al (2007) Regional climate modeling for the developing world: the ICTP RegCM3 and RegCNET. Bull Am Meteorol Soc 88:1395–1409. doi: 10.1175/BAMS-88-9-1395 CrossRefGoogle Scholar
  60. Palazzi E, von Hardenberg J, Provenzale A (2013) Precipitation in the Hindu-Kush Karakoram Himalaya: observations and future scenarios. J Geophys Res 118:85–100. doi: 10.1029/2012JD018697 Google Scholar
  61. Phillips TJ, Gleckler PJ (2006) Evaluation of continental precipitation in 20th century climate simulations: the utility of multimodel statistics. Water Resour Res 42:W03202. doi: 10.1029/2005WR004313 CrossRefGoogle Scholar
  62. Pollard E, Lakhani KH, Rothery P (1987) The detection of density-dependence from a series of annual censuses. Ecology 68:2046–2055. doi: 10.2307/1939895 CrossRefGoogle Scholar
  63. Rasmussen R, Baker B, Kochendorfer J, Meyers T, Landolt S, Fischer AP, Black J, Thériault JM, Kucera P, Gochis D, Smith C, Nitu R, Hall M, Ikeda K, Gutmann E (2012) How well are we measuring snow: the NOAA/FAA/NCAR winter precipitation test bed. Bull Am Meteorol Soc 93:811–829. doi: 10.1175/BAMS-D-11-00052.1 CrossRefGoogle Scholar
  64. Riahi K, Rao S, Krey V, Cho C, Chirkov V, Fischer G, Kindermann G, Nakicenovic N, Rafaj P (2011) RCP 8.5-a scenario of comparatively high greenhouse gas emissions. Clim Change 109:33–57. doi: 10.1007/s10584-011-0149-y CrossRefGoogle Scholar
  65. Rohrer M, Salzmann N, Stoffel M, Kulkarni AV (2013) Missing (in-situ) snow cover data hampers climate change and runoff studies in the Greater Himalayas. Sci Total Environ 468–469:S60–S70. doi: 10.1016/j.scitotenv.2013.09.056 CrossRefGoogle Scholar
  66. Rotstayn LD, Jeffrey SJ, Collier MA, Dravitzki SM, Hirst AC, Syktus JI, Wong KK (2012) Aerosol-and greenhouse gas-induced changes in summer rainfall and circulation in the Australasian region: a study using single-forcing climate simulations. Atmos Chem Phys 12:6377–6404. doi: 10.5194/acp-12-6377-2012 CrossRefGoogle Scholar
  67. Schultz MG, Heil A, Hoelzemann JJ, Spessa A, Thonicke K, Goldammer JG, Held AC, Pereira JMC, van het Bolscher M (2008) Global wildland fire emissions from 1960 to 2000. Global Biogeochem Cycles 22:GB2002. doi: 10.1029/2007GB003031 CrossRefGoogle Scholar
  68. Schneider U, Becker A, Finger P, Meyer-Christoffer A, Ziese M, Rudolf B (2014) GPCC’s new land surface precipitation climatology based on quality-controlled in situ data and its role in quantifying the global water cycle. Theor Appl Climatol 115:15–40. doi: 10.1007/s00704-013-0860-x CrossRefGoogle Scholar
  69. Schreiber T, Schmitz A (2000) Surrogate time series. Phys D Nonlinear Phenom 142:346–382. doi: 10.1016/S0167-2789(00)00043-9 CrossRefGoogle Scholar
  70. Scoccimarro E, Gualdi S, Bellucci A, Sanna A, Fogli PG, Manzini E, Vichi M, Oddo P, Navarra A (2011) Effects of tropical cyclones on ocean heat transport in a high resolution coupled general circulation model. J Clim 24:4368–4384. doi: 10.1175/2011JCLI4104.1 CrossRefGoogle Scholar
  71. Shepard D (1968) A two-dimensional interpolation function for irregularly spaced data. In: Proceedings of the 23rd ACM national conference, Brandon/Systems Press, Princeton, pp 517–524Google Scholar
  72. Smith SJ, van Aardenne J, Klimont Z, Andres RJ, Volke A, Arias SD (2011) Anthropogenic sulfur dioxide emissions: 1850–2005. Atmos Chem Phys 11:1101–1116. doi: 10.5194/acp-11-1101-2011 CrossRefGoogle Scholar
  73. Solomon S, Qin D, Manning M, Chen Z, Marquis M, Averyt KB, Tignor M, Miller HL (2007) Climate Change 2007 - The Physical Science Basis: Working Group I Contribution to the Fourth Assessment Report of the IPCC. Cambridge University PressGoogle Scholar
  74. Song Z, Qiao F, Song Y (2012) Response of the equatorial basin-wide SST to wave mixing in a climate model: an amendment to tropical bias. J Geophys Res 117:C00J26. doi: 10.1029/2012JC007931 Google Scholar
  75. Sperber KR, Annamalai H, Kang I-S, Kitoh A, Moise A, Turner A, Wang B, Zhou T (2013) The Asian summer monsoon: an intercomparison of CMIP5 vs. CMIP3 simulations of the late 20th century. Clim Dyn 41:2711–2744. doi: 10.1007/s00382-012-1607-6 CrossRefGoogle Scholar
  76. Sperber KR, Annamalai H (2014) The use of fractional accumulated precipitation for the evaluation of the annual cycle of monsoons. Clim Dyn (Online First Article). doi: 10.1007/s00382-014-2099-3
  77. Stevens B, Bony S (2013) What are climate models missing? Science 340:1053–1054. doi: 10.1126/science.1237554 CrossRefGoogle Scholar
  78. Su F, Duan X, Chen D, Hao Z, Cuo L (2012) Evaluation of the global climate models in the CMIP5 over the Tibetan Plateau. J Clim 26:3187–3208. doi: 10.1175/JCLI-D-12-00321.1 CrossRefGoogle Scholar
  79. Syed FS, Giorgi F, Pal JS, King MP (2006) Effect of remote forcings on the winter precipitation of central southwest Asia part 1: observations. Theor Appl Climatol 86:147–160. doi: 10.1007/s00704-005-0217-1 CrossRefGoogle Scholar
  80. Taylor KE, Stouffer RJ, Meehl GA (2012) An overview of CMIP5 and the experiment design. Bull Am Meteorol Soc 93:485–498. doi: 10.1175/BAMS-D-11-00094.1 CrossRefGoogle Scholar
  81. Tebaldi C, Knutti R (2007) The use of the multi-model ensemble in probabilistic climate projections. Phil Trans R Soc Lond A 365:2053–2075CrossRefGoogle Scholar
  82. Thomson AM, Calvin KV, Smith SJ, Kyle GP, Volke A, Patel P, Delgado-Arias S, Bond-Lamberty B, Wise MA, Clarke LE, Edmonds JA (2011) RCP4.5: a pathway for stabilization of radiative forcing by 2100. Clim Change 109:77–94. doi: 10.1007/s10584-011-0151-4 CrossRefGoogle Scholar
  83. Tiedtke M (1989) A comprehensive mass flux scheme for cumulus parameterization in large-scale models. Mon Weather Rev 117:1779–1800. doi: 10.1175/1520-0493(1989)117<1779:ACMFSF>2.0.CO;2 CrossRefGoogle Scholar
  84. Trenberth KE, Dai A, Rasmussen RM, Parsons DB (2003) The changing character of precipitation. Bull Am Meteorol Soc 84:1205–1217. doi: 10.1175/BAMS-84-9-1205 CrossRefGoogle Scholar
  85. Voldoire A, Sanchez-Gomez E, y Mélia DS, Decharme B, Cassou C, Sénési S, Valcke S, Beau I, Alias A, Chevallier M, Déqué M, Deshayes J, Douville H, Fernandez E, Madec G, Maisonnave E, Moine MP, Planton S, Saint-Martin D, Szopa S, Tyteca S, Alkama R, Belamari S, Braun A, Coquart L, Chauvin F (2013) The CNRM-CM5.1 global climate model: description and basic evaluation. Clim Dyn 40:2091–2121. doi: 10.1007/s00382-011-1259-y CrossRefGoogle Scholar
  86. Volodin EM, Dianskii NA, Gusev AV (2010) Simulating present-day climate with the INMCM4.0 coupled model of the atmospheric and oceanic general circulations. Izv Atmos Ocean Phys 46:414–431. doi: 10.1134/S000143381004002X CrossRefGoogle Scholar
  87. Watanabe M, Suzuki T, O’ishi R, Komuro Y, Watanabe S, Emori S, Takemura T, Chikira M, Ogura T, Sekiguchi M, Takata K, Yamazaki D, Yokohata T, Nozawa T, Hasumi H, Tatebe H, Kimoto M (2010) Improved climate simulation by MIROC5: mean states, variability, and climate sensitivity. J Clim 23:6312–6335. doi: 10.1175/2010JCLI3679.1 CrossRefGoogle Scholar
  88. Watanabe S, Hajima T, Sudo K, Nagashima T, Takemura T, Okajima H, Nozawa T, Kawase H, Abe M, Yokohata T, Ise T, Sato H, Kato E, Takata K, Emori S, Kawamiya M (2011) MIROC-ESM 2010: model description and basic results of CMIP5-20c3m experiments. Geosci Model Dev 4:845–872. doi: 10.5194/gmd-4-845-2011 CrossRefGoogle Scholar
  89. van der Werf GR, Randerson JT, Giglio L, Collatz GJ, Kasibhatla PS, Arellano AF Jr (2006) Interannual variability in global biomass burning emissions from 1997 to 2004. Atmos Chem Phys 6:3423–3441. doi: 10.5194/acp-6-3423-2006 CrossRefGoogle Scholar
  90. Wilcox LJ, Highwood EJ, Dunstone NJ (2013) The influence of anthropogenic aerosol on multi-decadal variations of historical global climate. Environ Res Lett 8:024033. doi: 10.1088/1748-9326/8/2/024033 CrossRefGoogle Scholar
  91. Willmott CJ, Rowe CM, Philpot WD (1985) Small-scale climate maps: a sensitivity analysis of some common assumptions associated with grid-point interpolation and contouring. Am Cartogr 12:5–16CrossRefGoogle Scholar
  92. Winiger M, Gumpert M, Yamout H (2005) Karakorum–Hindukush–western Himalaya: assessing high-altitude water resources. Hydrol Process 19:2329–2338. doi: 10.1002/hyp.5887 CrossRefGoogle Scholar
  93. Wu T, Li W, Ji J, Xin X, Li L, Wang Z, Zhang Y, Li J, Zhang F, Wei M, Shi X, Wu F, Zhang L, Chu M, Jie W, Liu Y, Wang F, Liu X, Li Q, Dong M, Liang X, Gao Y, Zhang J (2013) Global carbon budgets simulated by the Beijing Climate Center climate system model for the last century. J Geophys Res Atmos 118:4326–4347. doi: 10.1002/jgrd.50320 CrossRefGoogle Scholar
  94. Yadav RK, Kumar KR, Rajeevan M (2012) Characteristic features of winter precipitation and its variability over northwest India. J Earth Syst Sci 121:611–623. doi: 10.1007/s12040-012-0184-8 CrossRefGoogle Scholar
  95. Yu R, Li W, Zhang X, Liu Y, Yu Y, Liu H, Zhou T (2000) Climatic features related to Eastern China summer rainfalls in the NCAR CCM3. Adv Atmos Sci 17:503–518. doi: 10.1007/s00376-000-0014-9 CrossRefGoogle Scholar
  96. Yukimoto S, Adachi Y, Hosaka M, Sakami T, Yoshimura H, Hirabara M, Tanaka TY, Shindo E, Tsujino H, Deushi M, Mizuta R, Yabu S, Obata A, Nakano H, Koshiro T, Ose T, Kitoh A (2012) A new global climate model of the Meteorological Research Institute: MRI-CGCM3—model description and basic performance. J Meteorol Soc Jpn Ser II 90A:23–64. doi: 10.2151/jmsj.2012-A02 CrossRefGoogle Scholar
  97. Zhou TJ, Li ZX (2002) Simulation of the east Asian summer monsoon by using a variable resolution atmospheric GCM. Clim Dyn 19:167–180. doi: 10.1007/s00382-001-0214-8 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Elisa Palazzi
    • 1
    Email author
  • Jost von Hardenberg
    • 1
  • Silvia Terzago
    • 1
  • Antonello Provenzale
    • 1
  1. 1.Institute of Atmospheric Sciences and Climate (ISAC-CNR)TurinItaly

Personalised recommendations