Climate Dynamics

, Volume 44, Issue 9–10, pp 2411–2427 | Cite as

The dynamical structure of intense Mediterranean cyclones

  • Emmanouil FlaounasEmail author
  • Shira Raveh-Rubin
  • Heini Wernli
  • Philippe Drobinski
  • Sophie Bastin


This paper presents and analyzes the three-dimensional dynamical structure of intense Mediterranean cyclones. The analysis is based on a composite approach of the 200 most intense cyclones during the period 1989–2008 that have been identified and tracked using the output of a coupled ocean–atmosphere regional simulation with 20 km horizontal grid spacing and 3-hourly output. It is shown that the most intense Mediterranean cyclones have a common baroclinic life cycle with a potential vorticity (PV) streamer associated with an upper-level cyclonic Rossby wave breaking, which precedes cyclogenesis in the region and triggers baroclinic instability. It is argued that this common baroclinic life cycle is due to the strongly horizontally sheared environment in the Mediterranean basin, on the poleward flank of the quasi-persistent subtropical jet. The composite life cycle of the cyclones is further analyzed considering the evolution of key atmospheric elements as potential temperature and PV, as well as the cyclones’ thermodynamic profiles and rainfall. It is shown that most intense Mediterranean cyclones are associated with warm conveyor belts and dry air intrusions, similar to those of other strong extratropical cyclones, but of rather small scale. Before cyclones reach their mature stage, the streamer’s role is crucial to advect moist and warm air towards the cyclones center. These dynamical characteristics, typical for very intense extratropical cyclones in the main storm track regions, are also valid for these Mediterranean cases that have features that are visually similar to tropical cyclones.


Cyclone Potential Vorticity Relative Vorticity Extratropical Cyclone Cyclone Center 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



EF was supported by the IMPACT2C program (funded by the European Union Seventh Framework Programme, FP7/2007–2013 under the grant agreement 282746) and the WRF simulation have been performed at the GENCI (IDRIS) under allocation i2012010227. SRR acknowledges funding from the ETH Postdoctoral Fellowship Program and the Marie Curie Actions for People COFUND program. The authors are thankful to Sebastian Schemm (ETH Zurich) for his remarks on the detection of conveyor belts. This work was also supported by the IPSL group for regional climate and environmental studies and also contributes to the HyMeX program (HYdrological cycle in The Mediterranean EXperiment) through INSU-MISTRALS support and the Med–CORDEX program (A Coordinated Regional climate Downscaling Experiment-Mediterranean region).


  1. Appenzeller C, Davies HC (1992) Structure of stratospheric intrusions into the troposphere. Nature 358:570–572CrossRefGoogle Scholar
  2. Bleck R, Mattocks C (1984) A preliminary analysis of the role of potential vorticity in Alpine lee cyclogenesis. Beitr Phys Atmos 57:357–368Google Scholar
  3. Browning KA (1990) Organization of clouds and precipitation in extra-tropical cyclones. In: Newton CW, Holopainen EO (eds) Extratropical cyclones: the Erik Palmen memorial volume. Am Meteorol Soc pp 129–153Google Scholar
  4. Browning KA (1997) The dry intrusion perspective of extra-tropical cyclone development. Meteorol Appl 4:317–324. doi: 10.1017/S1350482797000613 CrossRefGoogle Scholar
  5. Buzzi A, D’Isidoro M, Davolio S (2003) A case-study of an orographic cyclone south of the Alps during the MAP SOP. Q J R Meteorol Soc 129:1795–1818. doi: 10.1256/qj.02.112 CrossRefGoogle Scholar
  6. Čampa J, Wernli H (2012) A PV perspective on the vertical structure of mature midlatitude cyclones in the northern hemisphere. J Atmos Sci 69:725–740. doi: 10.1175/JAS-D-11-050.1 CrossRefGoogle Scholar
  7. Campins J, Genovés A, Jansà A, Guijarro JA, Ramis C (2000) A catalogue and a classification of surface cyclones for the western Mediterranean. Int J Climatol 20:969–984. doi: 10.1002/1097-0088(200007)20:9<969:AID-JOC519>3.0.CO;2-4 CrossRefGoogle Scholar
  8. Campins J, Jansà A, Genovés A (2006) Three-dimensional structure of western Mediterranean cyclones. Int J Climatol 26:323–343. doi: 10.1002/joc.1275 CrossRefGoogle Scholar
  9. Campins J, Genovés A, Picornell MA, Jansà A (2011) Climatology of Mediterranean cyclones using the ERA-40 dataset. Int J Climatol 31:1596–1614. doi: 10.1002/joc.2183 Google Scholar
  10. Catto JL, Shaffrey LC, Hodges KI (2010) Can climate models capture the structure of extratropical cyclones? J Clim 23:1621–1635. doi: 10.1175/2009JCLI3318.1 CrossRefGoogle Scholar
  11. Chaboureau JP, Claud C (2006) Satellite-based climatology of Mediterranean cloud systems and their association with large-scale circulation. J Geophys Res 111:D01102. doi: 10.1029/2005JD006460 CrossRefGoogle Scholar
  12. Chaboureau JP, Pantillon F, Lambert D, Richard E, Claud C (2012) Tropical transition of a Mediterranean storm by jet crossing. Q J R Meteorol Soc 138:596–611. doi: 10.1002/qj.960 CrossRefGoogle Scholar
  13. Chang EKM, Song S (2006) The seasonal cycles in the distribution of precipitation around cyclones in the western north Pacific and Atlantic. J Atmos Sci 63:815–839. doi: 10.1175/JAS3661.1 CrossRefGoogle Scholar
  14. Claud C, Alhammoud B, Funatsu BM, Chaboureau JP (2010) Mediterranean hurricanes: large-scale environment and convective and precipitating areas from satellite microwave observations. Nat Hazards Earth Syst Sci 10:2199–2213. doi: 10.5194/nhess-10-2199-2010 CrossRefGoogle Scholar
  15. Davies HC, Schär C, Wernli H (1991) The palette of fronts and cyclones within a baroclinic wave development. J Atmos Sci 48:1666–1689CrossRefGoogle Scholar
  16. Davis CA, Emanuel KA (1991) Potential vorticity diagnostics of cyclogenesis. Mon Weather Rev 119:1929–1953. doi: 10.1175/1520-0493(1991)119<1929:PVDOC>2.0.CO;2 CrossRefGoogle Scholar
  17. Drobinski P et al (2012) Model of the regional coupled earth system (MORCE): application to process and climate studies in vulnerable regions. Environ Model Softw 35: 1–18. doi: 10.1016/j.envsoft.2012.01.017. ISSN 1364-8152
  18. Drobinski P, Ducrocq V, Alpert P, Anagnostou E, Béranger K, Borga M, Braud I, Chanzy A, Davolio S, Delrieu G, Estournel C, Filali Boubrahmi N, Font J, Grubišić V, Gualdi S, Homar V, Ivančan-Picek B, Kottmeier C, Kotroni V, Lagouvardos K, Lionello P, Llasat MC, Ludwig W, Lutoff C, Mariotti A, Richard E, Romero R, Rotunno R, Roussot O, Ruin I, Somot S, Taupier-Letage I, Tintore J, Uijlenhoet R, Wernli H (2014) HyMeX: a 10-year multidisciplinary program on the mediterranean water cycle. Bull Am Meteorol Soc 95:1063–1082. doi: 10.1175/BAMS-D-12-00242.1
  19. Eckhardt S, Stohl A, Wernli H, James P, Forster C, Spichtinger N (2004) A 15-year climatology of warm conveyor belts. J Clim 17:218–237. doi: 10.1175/1520-0442(2004)017<0218:AYCOWC>2.0.CO;2 CrossRefGoogle Scholar
  20. Emanuel K (2005) Genesis and maintenance of “Mediterranean hurricanes”. Adv Geosci 2:217–220CrossRefGoogle Scholar
  21. Field PR, Wood R (2007) Precipitation and cloud structure in midlatitude cyclones. J Clim 20:233–254CrossRefGoogle Scholar
  22. Field PR, Bodas-Salcedo A, Brooks ME (2011) Using model analysis and satellite data to assess cloud and precipitation in midlatitude cyclones. Q J R Meteorol Soc 137:1501–1515. doi: 10.1002/qj.858 CrossRefGoogle Scholar
  23. Fita L, Romero R, Ramis C (2006) Intercomparison of intense cyclogenesis events over the Mediterranean basin based on baroclinic and diabatic influences. Adv Geosci 7:333–342. doi: 10.5194/adgeo-7-333-2006 CrossRefGoogle Scholar
  24. Fita L, Romero R, Luque A, Emanuel K, Ramis C (2007) Analysis of the environments of seven Mediterranean tropical-like storms using an axisymmetric, nonhydrostatic, cloud resolving model. Nat Hazards Earth Syst Sci 7:41–56. doi: 10.5194/nhess-7-41-2007 CrossRefGoogle Scholar
  25. Flaounas E, Drobinski P, Bastin S (2013) Dynamical dowscaling of IPSL-CM5 CMIP5 historical simulations over the Mediterranean: benefits on the representation of regional surface winds and cyclogenesis. Clim Dyn 40:2497–2513. doi: 10.1007/s00382-012-1606-7 CrossRefGoogle Scholar
  26. Flaounas E, Kotroni V, Lagouvardos K, Flaounas I (2014) CycloTRACK (v1.0) – tracking winter extratropical cyclones based on relative vorticity: sensitivity to data filtering and other relevant parameters. Geosci Model Dev 7:1841–1853. doi: 10.5194/gmd-7-1841-2014 CrossRefGoogle Scholar
  27. Giorgi F, Jones C, Asrar G (2009) Addressing climate information needs at the regional level: the CORDEX framework. WMO Bull 58(3):175–183Google Scholar
  28. Hanley J, Caballero R (2012) The role of large-scale atmospheric flow and Rossby wave breaking in the evolution of extreme windstorms over Europe. Geophys Res Lett 39:L21708. doi: 10.1029/2012GL053408 CrossRefGoogle Scholar
  29. Holton JR (2004) An introduction to dynamic meteorology. Elsevier/Academic Press. ISBN 0-12-354015-1Google Scholar
  30. Homar V, Ramis C, Alonso S (2002) A deep cyclone of African origin over the Western Mediterranean: diagnosis and numerical simulation. Ann Geophys 20:93–106CrossRefGoogle Scholar
  31. Homar V, Jansà A, Campins J, Genovés A, Ramis C (2007) Towards a systematic climatology of sensitivities of Mediterranean high impact weather: a contribution based on intense cyclones. Nat Hazards Earth Syst Sci 7:445–454. doi: 10.5194/nhess-7-445-2007 CrossRefGoogle Scholar
  32. Horvath K, Fita L, Romero R, Ivančan-Picek B (2006) A numerical study of the first phase of a deep Mediterranean cyclone: cyclogenesis in the lee of the Atlas Mountains. Meteorol Z 15:133–146CrossRefGoogle Scholar
  33. Hoskins BJ, McIntyre ME, Robertson AW (1985) On the use and significance of isentropic potential vorticity maps. Q J R Meteorol Soc 111:877–946. doi: 10.1002/qj.49711147002 CrossRefGoogle Scholar
  34. Jansa A, Genoves A, Garcia-Moya JA (2000) Western Mediterranean cyclones and heavy rain. Part 1: numerical experiment concerning the Piedmont flood case. Meteorol Appl 7:323–333. doi: 10.1017/S1350482700001663 CrossRefGoogle Scholar
  35. Kotroni V, Lagouvardos K, Defer E, Dietrich S, Porcù F, Medaglia CM, Demirtas M (2006) The Antalya 5 December 2002 storm: observations and model analysis. J Appl Meteorol Climatol 45:576–590. doi: 10.1175/JAM2347.1 CrossRefGoogle Scholar
  36. Kouroutzoglou J, Flocas HA, Keay K, Simmonds I, Hatzaki M (2011) Climatological aspects of explosive cyclones in the Mediterranean. Int J Climatol 31:1785–1802. doi: 10.1002/joc.2203 CrossRefGoogle Scholar
  37. Kysely J, Picek J (2007) Probability estimates of heavy precipitation events in a flood- prone central-European region with enhanced influence of Mediterranean cyclones. Adv Geosci 12:43–50CrossRefGoogle Scholar
  38. Lagouvardos K, Kotroni V, Defer E (2007) The 21–22 January 2004 explosive cyclogenesis over the Aegean Sea: observations and model analysis. Q J R Meteorol Soc 133:1519–1531. doi: 10.1002/qj.121 CrossRefGoogle Scholar
  39. Lebeaupin-Brossier C, Drobinski P, Béranger K, Bastin S, Orain F (2013) Ocean memory effect on the dynamics of coastal heavy precipitation preceded by a mistral event in the northwestern Mediterranean. Q J R Meteorol Soc 139:1583–1597. doi: 10.1002/qj.2049
  40. Madec G (2008) NEMO Ocean engine, note du pole de modélisation, Institut Pierre-Simon Laplace (IPSL), France (2008) No 27 ISSN No 1288–1619Google Scholar
  41. Madonna E, Wernli H, Joos H, Martius O (2014) Warm conveyor belts in the ERA-Interim data set (1979–2010). Part I: climatology and potential vorticity evolution. J Clim 27:3–26CrossRefGoogle Scholar
  42. McTaggart-Cowan R, Galarneau TJ, Bosart LF, Milbrandt JA (2010) Development and tropical transition of an Alpine lee cyclone. Part I: case analysis and evaluation of numerical guidance. Mon Weather Rev 138:2281–2307. doi: 10.1175/2009MWR3147.1 CrossRefGoogle Scholar
  43. Moody JL, Munger JW, Goldstein AH, Jacob DJ, Wofsy SC (1998) Harvard forest regional-scale air mass composition by patterns in atmospheric transport history (PATH). J Geophys Res 103:13181–13194CrossRefGoogle Scholar
  44. Moscatello A, Miglietta MM, Rotunno R (2008) Numerical analysis of a Mediterranean ‘‘hurricane’’ over south-eastern Italy. Mon Weather Rev 136:4373–4396CrossRefGoogle Scholar
  45. Neiman PJ, Shapiro MA (1993) The life cycle of an extratropical marine cyclone. Part I: frontal-cyclone evolution and thermodynamic air–sea interaction. Mon Weather Rev 121:2153–2176CrossRefGoogle Scholar
  46. Neu U et al (2013) IMILAST: a community effort to intercompare extratropical cyclone detection and tracking algorithms. Bull Am Meteorol Soc 94:529–547. doi: 10.1175/BAMS-D-11-00154.1 CrossRefGoogle Scholar
  47. Nieto R, Sprenger M, Wernli H, Trigo R, Gimeno L (2008) Identification and climatology of cutoffs lows near the tropopause. Ann N Y Acad Sci 1146:256–290. doi: 10.1196/annals.1446.016 CrossRefGoogle Scholar
  48. Nissen KM, Leckebusch GC, Pinto JG, Renggli D, Ulbrich S, Ulbrich U (2010) Cyclones causing wind storms in the Mediterranean: characteristics, trends and links to large-scale patterns. Nat Hazards Earth Syst Sci 10:1379–1391. doi: 10.5194/nhess-10-1379-2010 CrossRefGoogle Scholar
  49. Omrani H, Drobinski P, Dubos T (2012) Investigation of indiscriminate nudging and predictability in a nested quasi-geostrophic model. Q J R Meteorol Soc 138:158–169CrossRefGoogle Scholar
  50. Omrani H, Drobinski P, Dubos T (2013) Optimal nudging strategies in regional climate modelling: investigation in a big-brother experiment over the European and Mediterranean regions. Clim Dyn 41:2451–2470CrossRefGoogle Scholar
  51. Pfahl S, Wernli H (2012) Quantifying the relevance of cyclones for precipitation extremes. J Clim 25:6770–6780. doi: 10.1175/JCLI-D-11-00705.1 CrossRefGoogle Scholar
  52. Pfahl S, Madonna E, Boettcher M, Joos H, Wernli H (2014) Warm conveyor belts in the ERA-Interim data set (1979–2010). Part II: moisture origin and relevance for precipitation. J Clim 27:27–40CrossRefGoogle Scholar
  53. Prezerakos NG, Flocas HA, Brikas D (2006) The role of the interaction between polar and subtropical jet in a case of depression rejuvenation over the Eastern Mediterranean. Meteorol Atmos Phys 92:139–151. doi: 10.1007/s00703-005-0142-y CrossRefGoogle Scholar
  54. Pytharoulis I, Craig GC, Ballard SP (2000) The hurricane-like Mediterranean cyclone of January 1995. Meteorol Appl 7:261–279CrossRefGoogle Scholar
  55. Schär C, Sprenger M, Lüthi D, Jiang Q, Smith RB, Benoit R (2003) Structure and dynamics of an Alpine potential-vorticity banner. Q J R Meteorol Soc 129:825–855. doi: 10.1256/qj.02.47 CrossRefGoogle Scholar
  56. Schemm S, Wernli H (2014) The linkage between the warm and cold conveyor belts in an idealized extratropical cyclone. J Atmos Sci 71:1443–1459CrossRefGoogle Scholar
  57. Schemm S, Wernli H, Papritz L (2013) Warm conveyor belts in idealized moist baroclinic wave simulations. J Atmos Sci 70:627–652. doi: 10.1175/JAS-D-12-0147.1 CrossRefGoogle Scholar
  58. Shapiro MA, Wernli H, Bao JW, Methven J, Zou X, Doyle J, Holt T, Donall-Grell E, Nieman P (1999) A planetary-scale to mesoscale perspective of the life cycles of extratropical cyclones: the bridge between theory and observations. In: Shapiro MA, Gronas S (eds) The life cycles of extratropical cyclones. American Meteorological Society, Boston, MA, pp 139–185Google Scholar
  59. Skamarock WC, Klemp JB (2008) A time-split nonhydrostatic atmospheric model for weather research and forecasting applications. J Comput Phys 227:3465–3485CrossRefGoogle Scholar
  60. Stoelinga MT (1996) A potential vorticity-based study of the role of diabatic heating and friction in a numerically simulated baroclinic cyclone. Mon Weather Rev 124:849–874CrossRefGoogle Scholar
  61. Tafferner A (1990) Lee cyclogenesis resulting from the combined outbreak of cold air and potential vorticity against the Alps. Meteorol Atmos Phys 43:31–47CrossRefGoogle Scholar
  62. Thorncroft CD, Hoskins BJ, McIntyre ME (1993) Two paradigms of baroclinic-wave life-cycle behaviour. Q J R Meteorol Soc 119:17–55. doi: 10.1002/qj.49711950903 CrossRefGoogle Scholar
  63. Tosi E, Smith RB, Bradford ML (1987) Aerial observations of stratospheric descent in a Gulf of Genoa cyclone. Meteorol Atmos Phys 36(1987):141–160CrossRefGoogle Scholar
  64. Tous M, Romero R (2013) Meteorological environments associated with medicane development. Int J Climatol 33:1–14. doi: 10.1002/joc.3428 CrossRefGoogle Scholar
  65. Trigo IF, Bigg GR, Davies TD (2002) Climatology of cyclogenesis mechanisms in the Mediterranean. Mon Weather Rev 130:549–569. doi: 10.1175/1520-0493(2002)130<0549:COCMIT>2.0.CO;2 CrossRefGoogle Scholar
  66. Ulbrich U, Leckebusch GC, Pinto JG (2009) Extratropical cyclones in the present and future climate: a review. Theor Appl Climatol 96:117–131CrossRefGoogle Scholar
  67. Wernli H, Davies HC (1997) A Lagrangian-based analysis of extratropical cyclones. I: the method and some applications. Q J R Meteorol Soc 123:467–489CrossRefGoogle Scholar
  68. Wernli H, Dirren S, Liniger MA, Zillig M (2002) Dynamical aspects of the life cycle of the winter storm ‘Lothar’ (24–26 December 1999). Q J R Meteorol Soc 128:405–429. doi: 10.1256/003590002321042036 CrossRefGoogle Scholar
  69. Ziv B, Saaroni H, Romem M, Heifetz E, Harnik N, Baharad A (2010) Analysis of conveyor belts in winter Mediterranean cyclones. Theor Appl Climatol 99:441–455. doi: 10.1007/s00704-009-0150-9 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Emmanouil Flaounas
    • 1
    • 2
    Email author
  • Shira Raveh-Rubin
    • 1
  • Heini Wernli
    • 1
  • Philippe Drobinski
    • 2
  • Sophie Bastin
    • 3
  1. 1.Institute for Atmospheric and Climate Science, ETH ZurichZurichSwitzerland
  2. 2.Institut Pierre Simon Laplace/Laboratoire de Météorologie Dynamique, CNRSEcole PolytechniquePalaiseauFrance
  3. 3.Université Versailles St-Quentin; Sorbonne Universités, UPMC Univ. Paris 06; CNRS/INSU, LATMOS-IPSLGuyancourtFrance

Personalised recommendations