Climate Dynamics

, Volume 45, Issue 3–4, pp 867–880 | Cite as

A mechanism for the multidecadal modulation of ENSO teleconnection with Europe

  • Jorge López-Parages
  • Belén Rodríguez-Fonseca
  • Laurent Terray


El Niño phenomenon is the main oceanic driver of the interannual atmospheric variability and a determinant source of predictability in the tropics and extratropics. Several studies have found a consistent and statistically significant impact of El Niño over the North Atlantic European Sector, which could lead to an improvement of the skill of current seasonal forecast systems over Europe. Nevertheless, this signal seems to be non-stationary in time and it could be modulated by the ocean at very low frequencies. Hence, the seasonal climate predictability based on El Niño could be variable and only effective for specific time periods. This study considers the multidecadal changes in the ocean mean state as a possible modulator of ENSO-European rainfall teleconnection at interannual timescales. A long control simulation of the CNRM-CM5 model is used to substantiate this hypothesis and to assess if it can be relevant to explain the non-stationary behavior seen in the twentieth century. The model reproduces the leading rainfall mode over the Euro-Mediterranean region, and its non stationary link with El Niño. This teleconnection has been identified in coincidence with changes of the zonal mean flow at upper levels, which influence the propagation of the waves from the tropics to extratropics through the atmosphere and, hence, to explain the changing impact over Europe. However, the non-stationary impact observed along the twentieth century could also be related to the observed changes in the interannual oceanic forcing signal itself. The results obtained suggest, for both hypotheses, an important role of the natural internal variability of the ocean at multidecadal timescales.


Atmospheric teleconnection ENSO European rainfall Multidecadal modulation 



We are indebted to CERFACS for providing the CNRM-CM5 control simulation, which has made possible this study. We thank to the University of Delaware, GPCC, NOAA, and the UK Met-Office for the provided data. The study has been partially supported by the National Spanish Projects: TRACS (CGL2009-10285) and MULCLIVAR (CGL2012-38923-C02-01). JLP also thanks the FPI grant BES-2010-042234 of the Ministerio de Economía y Competitividad of Spanish Goverment. We would like to thank the anonymous reviewers for their helpful comments, which greatly helped to improve the manuscript.

Supplementary material

382_2014_2319_MOESM1_ESM.pdf (765 kb)
Supplementary material 1 (PDF 766 kb)


  1. Ambrizzi T, Hoskins BJ, Hsu HH (1995) Rossby wave propagation and teleconnection patterns in the austral winter. J Atmos Sci 52:3661–3672CrossRefGoogle Scholar
  2. An SI (2009) A review of interdecadal changes in the nonlinearity of the El Niño-Southern Oscillation. Theoret Appl Climatol 97(1–2):29–40. doi: 10.1007/s00704-008-0071-z CrossRefGoogle Scholar
  3. An SI, Wang B (1999) Interdecadal change of the structure of the ENSO mode and its impact on the ENSO frequency. J Clim 13:2044–2056CrossRefGoogle Scholar
  4. Barnston AG, Livezey RE (1987) Classification, seasonality, and persistence of low-frequency atmospheric circulation patterns. Monsoon Weather Rev 115:1083–1126CrossRefGoogle Scholar
  5. Bladé I, Newman M, Alexander M, Scott J (2008) The late fall extratropical response to ENSO: sensitivity to coupling and convection in the tropical west Pacific. J Clim 21:6101–6118CrossRefGoogle Scholar
  6. Branstator G (1992) The maintenance of low-frequency atmospheric anomalies. J Atmos Sci 49:1924–1946CrossRefGoogle Scholar
  7. Branstator G (2002) Circumglobal Teleconnections, the Jet Stream Waveguide, and the North Atlantic Oscillation. J Clim 15(14):1893–1910. doi: 10.1175/1520-0442(2002)015<1893:CTTJSW>2.0.CO;2 CrossRefGoogle Scholar
  8. Bretherton CS, Smith C, Wallace JM (1992) An intercomparison of methods for finding coupled patterns in climate data. J Clim 5(6):541–560. doi: 10.1175/1520-0442(1992)005<0541:AIOMFF>2.0.CO;2 CrossRefGoogle Scholar
  9. Brönnimann, S (2007) Impact of El Niño–Southern Oscillation on European climate. Rev Geophys 45:RG3003, doi: 10.1029/2006RG000199
  10. Cassou C, Terray L (2001) Oceanic forcing of the winter-time low-frequency atmospheric variability in the North Atlantic European sector: a study with the ARPEGE model. J Clim 14:4266–4291CrossRefGoogle Scholar
  11. Castanheira JM, Graf HF (2003) North Pacific-North Atlantic relationships under stratospheric control? J Geophys Res 108(D1):4036. doi: 10.1029/2002JD002754 CrossRefGoogle Scholar
  12. Choi J, Kug SAJ, Nin E (2011) The role of mean state on changes in El Nino’s flavor. 1205–1215. doi: 10.1007/s00382-010-0912-1
  13. Czaja A, Frankignoul C (1999) Influence of the North Atlantic SST on the atmospheric circulation. Geophys Res Lett 26(19):2969–2972. doi: 10.1029/1999GL900613 CrossRefGoogle Scholar
  14. Dommenget D, Bayr T, Frauen C (2012) Analysis of the non-linearity in the pattern and time evolution of El Niño southern oscillation. Clim Dyn 40(11–12):2825–2847. doi: 10.1007/s00382-012-1475-0 Google Scholar
  15. Dong B, Sutton RT, Sutton AA (2006) Multidecadal modulation of El Niño-Southern Oscillation (ENSO) variance by Atlantic Ocean sea surface temperatures. Geophys Res Lett 33:L08705. doi: 10.1029/2006GL025766 Google Scholar
  16. Enfield DB, Mestas Nuñez AM, Trimble PJ (2001) The Atlantic multidecadal oscillation and its relation to rainfall and river flows in the continental US. Geophys Res Lett 28(10):2077. doi: 10.1029/2000GL012745 CrossRefGoogle Scholar
  17. Fedorov AV (2000) Is El Nino changing? Science 288(5473):1997–2002. doi: 10.1126/science.288.5473.1997 CrossRefGoogle Scholar
  18. Fraedrich K, Müller K (1992) Climate anomalies in Europe associated with ENSO extremes. Int J Climatol 12:25–31. doi: 10.1002/joc.3370120104 CrossRefGoogle Scholar
  19. García-Serrano J, Rodríguez-Fonseca B, Bladé I, Zurita-Gotor P, Cámara A (2010) Rotational atmospheric circulation during North Atlantic-European winter: the influence of ENSO. Clim Dyn 37(9–10):1727–1743. doi: 10.1007/s00382-010-0968-y Google Scholar
  20. Gill AE (1980) Some simple solutions for heat-induced tropical circulations. Q J R Meteorol Soc 106:447–462CrossRefGoogle Scholar
  21. Gouirand I, Moron V, Zorita E (2007) Teleconnections between ENSO and North Atlantic in an ECHO-G simulation of the 1000–1990 period. Geophys Res Lett 34(6). doi:  10.1029/2006GL028852
  22. Greatbatch RJ, Lu J, Peterson KA (2004) Nonstationary impact of ENSO on Euro-Atlantic winter climate. Geophys Res Lett 31:L02208. doi: 10.1029/2003GL018542 CrossRefGoogle Scholar
  23. Häkkinen S, Rhines PB, Worthen DL (2001) Atmospheric blocking and Atlantic multidecadal ocean variability. Science 334(6056):655–659. doi: 10.1126/science.1205683 CrossRefGoogle Scholar
  24. Hastenrath S (2003) Upper-air circulation of the Southern Oscillation from the NCEP-NCAR reanalysis. Meteorol Atmos Phys 83:51–65CrossRefGoogle Scholar
  25. Hilmer M, Jung T (2000) Evidence for a recent change in the link between theNorth Atlantic Oscillation and Arctic Sea ice export. Geophys Res Lett 27(7):989–992. doi: 10.1029/1999GL010944 CrossRefGoogle Scholar
  26. Honda M, Nakamura H, Ukita J, Kousaka I, Takeuchi K (2001) Interannual seesaw between the Aleutian and Icelandic lows, part I: seasonal dependence and life cycle. J. Climate. 14:1029–1041CrossRefGoogle Scholar
  27. Hoskins BJ, Ambrizzi T (1993) Rossby wave propagation on a realistic longitudinally varying flow. Atmos. Sci. 50:1661–1671CrossRefGoogle Scholar
  28. Hoskins BJ, Karoly K (1981) The steady response of a spherical atmosphere to thermal and orographic forcing. J Atmos Sci 38:1179–1196CrossRefGoogle Scholar
  29. Hsu HH, Lin SH (1992) Global teleconnections in the 250-mb streamfunction field during the northern hemisphere winter. Monsoon Weather Rev 120:1169–1190CrossRefGoogle Scholar
  30. Hurrell JW, Kushnir Y, Ottersen G, Visbeck M (2003) An overview of the North Atlantic Oscillation, in the North Atlantic Oscillation: climatic significance and environmental impactGoogle Scholar
  31. Ineson S, Scaife AA (2008) The role of the stratosphere in the European climate response to El Niño. Nat Geosci 2(1):32–36. doi: 10.1038/ngeo381 CrossRefGoogle Scholar
  32. Kao HY, Yu JY (2009) Contrasting Eastern-Pacific and Central-Pacific types of ENSO. J Clim 22(3):615–632. doi: 10.1175/2008JCLI2309.1 CrossRefGoogle Scholar
  33. Knight JR, Allan RJ, Folland CK, Vellinga M, Mann ME (2005) A signature of persistent natural thermohaline circulation cycles in observed climate. Geophys Res Lett 32. doi: 10.1029/2005GL024233
  34. Kug JS, Jin FF, An SI (2009) Two types of El Niño events: cold tongue El Niño and warm pool El Niño. J Clim 22(6):1499–1515. doi: 10.1175/2008JCLI2624.1 CrossRefGoogle Scholar
  35. Livezey RE, Mo KC (1987) Tropical-extratropical teleconnections during the Northern Hemisphere winter. Part II: relationships between monthly mean Northern Hemisphere circulation patterns and proxies for tropical convection. Monsoon Weather Rev 115:3115–3132CrossRefGoogle Scholar
  36. López-Parages J, Rodríguez-Fonseca B (2012) Multidecadal modulation of El Niño influence on the Euro-Mediterranean rainfall. Geophys Res Lett 39(2). doi: 10.1029/2011GL050049
  37. Losada T, Rodríguez-Fonseca B, Polo I, Janicot S, Gervois S, Chauvin F, Ruti P (2010) Tropical response to the Atlantic Equatorial mode: AGCM multimodel approach. Clim Dyn 5:45–52CrossRefGoogle Scholar
  38. Losada T, Rodríguez-Fonseca B, Mohino E, Bader J, Janicot S, Mechoso CR (2012) Tropical SST and Sahel rainfall: a non-stationary relationship. Geophys Res Lett 39:L12705. doi: 10.1029/2012GL052423 CrossRefGoogle Scholar
  39. Lu J, Greatbatch RJ (2002) The changing relationship between the NAO and northern hemisphere climate variability. Geophys Res Lett 29(7):1–4. doi: 10.1029/2001GL014052 CrossRefGoogle Scholar
  40. Mantua NJ, Hare SR, Zhang Y, Wallace JM, Francis RC (1997) A Pacific interdecadal climate oscillation with impacts on salmon production. Bull Am Meteor Soc 78:1069–1079CrossRefGoogle Scholar
  41. Mariotti A, Zeng N, Lau KM (2002) Euro-Mediterranean rainfall and ENSO: a seasonally varying relationship. Geophys Res Lett 29(12):1621. doi: 10.1029/2001GL014248 CrossRefGoogle Scholar
  42. Mathieu PP, Sutton RT, Dong B, Collins M (2004) Predictability of winter climate over the North Atlantic European region during ENSO events. J Clim 17(1996):1953–1974. doi: 10.1175/1520-0442(2004)017<1953:POWCOT>2.0.CO;2 CrossRefGoogle Scholar
  43. Matsuura K,Willmott CJ, Terrestrial Precipitation (2009) 1900-2008 Gridded Monthly Time Series version 2.01,
  44. Meng Q, Latif M, Park W, Keenlyside NS, Semenov VA, Martin T (2012) Twentieth century Walker Circulation change: data analysis and model experiments. Clim Dyn 38:1757–1773. doi: 10.1007/s00382-011-1047-8 CrossRefGoogle Scholar
  45. Mo KC, Livezey RE (1986) Tropical-extratropical geopotential height teleconnections during the Northern Hemisphere winter. Monsoon Weather Rev 114:2488–2515CrossRefGoogle Scholar
  46. Moron M, Plaut G (2003) The impact of El Niño Southern Oscillation upon weather regimes over Europe and the North Atlantic boreal winter. Int J Climatol 23:363–379. doi: 10.1002/joc.890 CrossRefGoogle Scholar
  47. North GR, Bell TL, Cahalan RF, Moeng FJ (1982) Sampling errors in the estimation of empirical orthogonal functions. Monsoon Weather Rev 110:699–706. doi: 10.1175/1520-0493(1982)110<0699:SEITEO>2.0.CO;2 CrossRefGoogle Scholar
  48. Pozo-Vazquez D, Gomiz-Fortis SR, Tovar-Pescador J, Esteban-Parra MJ, Castro-Diez Y (2005) El Niño-southern oscillation events and associated European winter precipitation anomalies. Int J Climatol 25(1):17–31. doi: 10.1002/joc.1097 CrossRefGoogle Scholar
  49. Rayner NA, Parker DE, Horton EB, Folland CK, Alexander LV, Rowell DP, Kent EC, Kaplan A (2003) Global analyses of sea surface temperature, sea ice, and night marine air temperature since the late nineteenth century. J Geophys Res 108(D14):4407. doi: 10.1029/2002JD002670 CrossRefGoogle Scholar
  50. Rodwell MJ, Rowell DP, Folland CK (1999) Oceanic forcing of the wintertime North Atlantic oscillation and climate variability of northern Europe. Nature 10:1635–1647Google Scholar
  51. Ruiz-Barradas A, Carton JA, Nigam S (2003) Role of the atmosphere in climate variability of the tropical Atlantic. J Clim 16:2052–2065CrossRefGoogle Scholar
  52. Schneider U et al (2008) Global precipitation analysis products of the GPCC. Global Precipitation Climatology Centre, OffenbachGoogle Scholar
  53. Smith TM, Reynolds RW, Peterson TC, Lawrimore J (2008) Improvements to NOAA’s historical merged land-ocean surface temperature analysis (1880–2006). J Clim 21:2283–2296. doi: 10.1175/2007JCLI2100.1 CrossRefGoogle Scholar
  54. Sutton RT, Hodson DLR (2007) Climate response to basin-scale warming and cooling of the North Atlantic Ocean. J Clim 20:891–907. doi: 10.1175/JCLI4038.1 CrossRefGoogle Scholar
  55. Toniazzo T, Scaife A (2006) The influence of ENSO on winter North Atlantic climate. Geophys Res Lett 33(24). doi: 10.1029/2006GL027881
  56. Trenberth KE, Branstator GW, Karoly D, Kumar A, Lau NC, Ropelewski C (1998) Progress during TOGA in understanding and modeling global teleconnections associated with tropical sea surface temperatures. J Geophys Res 103(C7):14291–14324. doi: 10.1029/97JC01444 CrossRefGoogle Scholar
  57. Van Loon H, Rogers J (1978) The seesaw in winter temperatures between Greenland and Northern Europe. Part I: general description. Monsoon Weather Rev 106:296–310CrossRefGoogle Scholar
  58. Van Oldenborgh GJ, Burgers G (2005) Searching for decadal variations in ENSO precipitation teleconnections. Geophys Res Lett 32:L15701. doi: 10.1029/2005GL023110 CrossRefGoogle Scholar
  59. Vicente-Serrano SM, López-Moreno JI (2008) Nonstationary influence of the North Atlantic Oscillation on European precipitation. J Geophys Res 113(D20):D20120. doi: 10.1029/2008JD010382 CrossRefGoogle Scholar
  60. Voldoire A, Sanchez-Gomez E, Salas y Mélia D, Decharme B, Cassou C, Sénési S, Valcke S et al (2013) The CNRM-CM5.1 global climate model: description and basic evaluation. Clim Dyn 40(9–10):2091–2121. doi: 10.1007/s00382-011-1259-y CrossRefGoogle Scholar
  61. Walker GT (1924) Correlation in seasonal variations of weather, IX A further study of world weather. Mem India Meteorol Dep 24(9):275–333Google Scholar
  62. Wallace JM, Gutzler DS (1981) Teleconnections in the geopotential height field during the northern hemisphere winter. Monsoon Weather Rev 109:784–812. doi: 10.1175/1520-0493(1981)109 CrossRefGoogle Scholar
  63. Wang C (2002) Atlantic climate variability and its associated atmospheric circulation cells. J Clim 15(13):1516–1536. doi: 10.1175/15200442(2002)015<1516:ACVAIA>2.0.CO;2 CrossRefGoogle Scholar
  64. Wang C (2004) ENSO, climate variability and the Walker and Hadley circulations. In: Diaz HF, Bradley RS (eds) The Hadley circulation: present, past and future. Advances in global change research, vol 21. Springer, New York, pp 173–202CrossRefGoogle Scholar
  65. Wang C, Enfield DB (2003) A further study of the tropical western hemisphere warm pool. J Clim 16:1476–1493. doi: 10.1175/1520-0442-16.10.1476 CrossRefGoogle Scholar
  66. Wang C, Lee SK, Enfield DB (2008) Atlantic warm pool acting as a link between Atlantic multidecadal oscillation and Atlantic tropical cyclone activity. Geochem Geophys Geosyst 9:Q05V03. doi: 10.1029/2007GC001809
  67. Wilks DS (2005) Statistical methods in the atmospherics sciences. Academic Press. ISBN:13: 978-0-12-75196Google Scholar
  68. Yeh SW, Kirtman BP, Kug JS, Park W, Latif M (2011) Natural variability of the central Pacific El Niño event on multi-centennial timescales. Geophys Res Lett 38(2). doi: 10.1029/2010GL045886
  69. Zanchettin D, Franks SW, Traverso P, Tomasino M (2008) On ENSO impacts on European wintertime rainfalls and their modulation by the NAO and the Pacific multi-decadal variability described through the PDO index. Int J Climat 28:995–1006. doi: 10.1002/joc CrossRefGoogle Scholar
  70. Zhang L, Wang C, Wu L (2011) Low-frequency modulation of the Atlantic warm pool by the Atlantic multidecadal oscillation. Clim Dyn 39(7–8):1661–1671. doi: 10.1007/s00382-011-1257-0 Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Jorge López-Parages
    • 1
  • Belén Rodríguez-Fonseca
    • 1
  • Laurent Terray
    • 2
  1. 1.Departamento de Física de la Tierra, Astronomía y Astrofísica I (Geofísica y Meteorología). Instituto de Geociencias UCM-CSIC, Facultad de C.C. FísicasUniversidad Complutense de Madrid (UCM)MadridSpain
  2. 2.Climate Modelling and Global Change TeamCERFACS/CNRSToulouseFrance

Personalised recommendations